20 resultados para DIFFUSION-COEFFICIENTS
em Aston University Research Archive
Resumo:
Appealingly simple: A new method is described that allows the diffusion coefficient of a small molecule to be estimated given only the molecular weight and the viscosity of the solvent used. This method makes possible the quantitative interpretation of the diffusion domain of diffusion-ordered NMR spectra (see picture). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The component spectra of a mixture of isomers with nearly identical diffusion coefficients cannot normally be distinguished in a standard diffusion-ordered spectroscopy (DOSY) experiment but can often be easily resolved using matrix-assisted DOSY, in which diffusion behaviour is manipulated by the addition of a co-solute such as a surfactant. Relatively little is currently known about the conditions required for such a separation, for example, how the choice between normal and reverse micelles affects separation or how the isomer structures themselves affect the resolution. The aim of this study was to explore the application of sodium dodecyl sulfate (SDS) normal micelles in aqueous solution and sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) aggregates in chloroform, at a range of concentrations, to the diffusion resolution of some simple model sets of isomers such as monomethoxyphenols and short chain alcohols. It is shown that SDS micelles offer better resolution where these isomers differ in the position of a hydroxyl group, whereas AOT aggregates are more effective for isomers differing in the position of a methyl group. For both the normal SDS micelles and the less well-defined AOT aggregates, differences in the resolution of the isomers can in part be rationalised in terms of differing degrees of hydrophobicity, amphiphilicity and steric effects. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Diffusion-ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix-assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co-solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548-4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over whichmatrix-assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool formixture analysis. © 2010 John Wiley & Sons, Ltd.
Resumo:
The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
A homologous series of ultra-violet stabilisers containing 2-hydroxybenzophenone (HBP) moiety as a uv absorbing chromophore with varying alkyl chain lengths and sizes were prepared by known chemical synthesis. The strong absorbance of the HBP chromophore was utilized to evaluate the concentration of these stabilisers in low density polyethylene films and concentration of these stabilisers in low density polyethylene films and in relevant solvents by ultra-violet/visible spectroscopy. Intrinsic diffusion coefficients, equilibrium solubilities, volatilities from LDPE films and volatility of pure stabilisers were studied over a temperature range of 5-100oC. The effects of structure, molecular weight and temperature on the above parameters were investigated and the results were analysed on the basis of theoretical models published in the literature. It has been found that an increase in alkyl chain lengths does not change the diffusion coefficients to a significant level, while attachment of polar or branched alkyl groups change their value considerably. An Arrhenius type of relationship for the temperature dependence of diffusion coefficients seems to be valid only for a narrow temperature range, and therefore extrapolation of data from one temperature to another leads to a considerable error. The evidence showed that increase in additive solubility in the polymer is favoured by lower heat of fusions and melting points of additives. This implies the validity of simple regular solution theory to provide an adequate basis for understanding the solubility of additives in polymers The volubility of stabilisers from low density polyethylene films showed that of an additive from a polymer can be expressed in terms of a first-order kinetic equation. In addition the rate of loss of stabilisers was discussed in relation to its diffusion, solubility and volatility and found that all these factors may contribute to the additive loss, although one may be a rate determining factor. Stabiliser migration from LDPE into various solvents and food simulants was studied at temperatures 5, 23, 40 and 70oC; from the plots of rate of migration versus square root time, characteristic diffusion coefficients were obtained by using the solution of Fick's diffusion equations. It was shown that the rate of migration depends primarily on partition coefficients between solvent and the polymer of the additive and also on the swelling action of the contracting media. Characteristic diffusion coefficients were found to approach to intrinsic values in non swelling solvents, whereas in the case of highly swollen polymer samples, the former may be orders of magnitude greater than the latter.
Resumo:
The underlying theme of this thesis is one of exploring the processes involved in the enhancement of percutaneous absorption. The development of an attenuated total reflectance Fourier-Transform infrared (ATR-FTIR) spectroscopic method to analyse diffusion of suitable topically applied compounds in membrane is described. Diffusion coefficients (D/h2) and membrane solubility (AO) for topically applied compounds were determined using a solution to Fick's second law of diffusion. This method was employed to determine the diffusional characteristics of a model permeant, 4-cyanophenol (CP), across silicone membrane as a function of formulation applied and permeant physicochemical properties. The formulations applied were able to either affect CP diffusivity and/or its membrane solubility in the membrane; such parameters partially correlated with permeant physicochemical properties in each formulation. The interplay during the diffusion process between drug, enhancer and vehicle in stratum corneum (SC) was examined. When enhancers were added to the applied formulations, CP diffusivity and solubility were significantly enhanced when compared to the neat propylene glycol (PG) application. Enhancers did not affect PG diffusivity in SC but enhancers did affect PG solubility in SC. PG diffusion closely resembled that of CP, implying that the respective transport processes were inter-related. Additionally, a synergistic effect, which increases CP diffusivity and membrane solubility in SC, was found to occur between PG and water. Using 12-azidooleic acid (AOA) as an IR active probe for oleic acid, the simultaneous penetration of CP, AOA and PG into human stratum corneum was determined. It was found that the diffusion profiles for all three permeants were similar. This indicated that the diffusion of each species through SC was closely related and most likely occurred via the same route or SC microenvironment.
Resumo:
Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.
Resumo:
Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.
Resumo:
The effect of 10% and 20% replacement metakaolin on a number of aspects of hydration chemistry and service performance of ordinary Portland cement pastes has been investigated. The analysis of expressed pore solutions has revealed that metakaolin-blended specimen pastes possess enhanced chloride binding capacities and reduced pore solution pH values when compared with their unblended counterparts. The implications of the observed changes in pore solution chemistry with respect to chloride induced reinforcement corrosion and the reduction in expansion associated with the alkali aggregate reaction are discussed. Differential thermal analysis, mercury intrusion porosimetry, and nuclear magnetic resonance spectroscopy have been employed in the analysis of the solid phase. It is suggested that hydrated gehlenite (a product of pozzolanic reaction) is operative in the removal and solid state binding of chloride ions from the pore solution of metakaolin-blended pastes. Diffusion coefficients obtained in a non-steady state chloride ion diffusion investigation have indicated that cement pastes containing 10% and 20% replacement metakaolin exhibit superior resistance to the penetration of chloride ions in comparison with those of plain OPC of the same water:cement ratio. The chloride induced corrosion behaviour of cement paste samples, of water:cement ratio 0.4, containing 0% , 10%, and 20% replacement metakaolin, has been monitored using the linear polarization technique. No significant corrosion of embedded mild steel was observed over a 200 day period.
Resumo:
The work described in this thesis is an attempt to elucidate the relationships between the pore system and a number of engineering properties of hardened cement paste, particularly tensile strength and resistances to carbonation and ionic penetration. By examining aspects such as the rate of carbonisation, the pore size distribution, the concentration of ions in the pore solution and the phase composition of cement pastes, relationships between the pore system (pores and pore solution) and the resistance to carbonation were investigated. The study was carried out in two parts. First, cement pastes with different pore systems were compared, whilst secondly comparisons were made between the pore systems of cement pastes with different degrees of carbonation. Relationships between the pore structure and ionic penetration were studied by comparing kinetic data relating to the diffusion of various ions in cement pastes with different pore systems. Diffusion coefficients and activation energies for the diffusion process of Cl- and Na+ ions in carbonated and non-carbonated cement pastes were determined by a quasi-steady state technique. The effect of the geometry of pores on ionic diffusion was studied by comparing the mechanisms of ionic diffusion for ions with different radii. In order to investigate the possible relationship between tensile strength and macroporosity, cement paste specimens with cross sectional areas less than 1mm2 were produced so that the chance of a macropore existing within them was low. The tensile strengths of such specimens were then compared with those of larger specimens.
Resumo:
This study has investigated the inclusion of pulverised fuel ash (PFA) and blast furnace slag (BFS) into hardened cement pastes (HCP) in retarding the ingress of chloride ions and oxygen molecules from the external environment. The influence of environmental factors such as drying and carbonation on the pore structure and diffusional properties of OPC, OPC/30%PFA and OPC/65%BFS hardened pastes was investigated. Specimens were desorbed from a saturated surface dry condition to a near constant weight at 65% relative humidity (RH) while others were simultaneously exposed to a 65% RH atmosphere and a carbon dioxide atmosphere of up to 5% by volume until there were fully carbonated. The presence of the interfacial zone at the cement paste-aggregate interface was critically reviewed and identified. The influence of the interfacial zone on porosity and chloride ingress in assumed periodic composites of glass bead mortars was also studied. The investigations have demonstrated the following: (a) The use of fly ash and slag in blended cement pastes has resulted in a marked reduction in capillary porosity and rate of chloride ingress. (b) The ratio of oxygen to chloride diffusion coefficients increased from values close to 1 in permeable pastes, to values of around 15 in low-permeability blended fly ash and slag pastes. This supports the view that the diffusion of chloride ions is retarded by the surface charge of the hydrated cement gel in low-permeability pastes. (c) Compared with plain OPC pastes, the carbonation of blended fly ash and slag pastes resulted in a marked increase in the coarse capillary porosity and a corresponding increase in the oxygen and chloride diffusion rates.
Resumo:
Biodiesel is fast becoming one of the key transport fuels as the world endeavours to reduce its carbon footprint and find viable alternatives to oil derived fuels. Research in the field is currently focusing on more efficient ways to produce biodiesel, with the most promising avenue of research looking into the use of heterogeneous catalysis. This article presents a framework for kinetic reaction and diffusive transport modelling of the heterogeneously catalysed transesterification of triglycerides into fatty acid methyl esters (FAMEs), unveiled by a model system of tributyrin transesterification in the presence of MgO catalysts. In particular, the paper makes recommendations on multicomponent diffusion calculations such as the diffusion coefficients and molar fluxes from infinite dilution diffusion coefficients using the Wilke and Chang correlation, intrinsic reaction kinetic studies using the Eley-Rideal kinetic mechanism with methanol adsorption as the rate determining steps and multiscale reaction-diffusion process simulation between catalytic porous and bulk reactor scales. © 2013 The Royal Society of Chemistry.
Resumo:
Computer simulation has been used to study the structure and dynamics of methane in hydrated sodium montmorillonite clays under conditions encountered in sedimentary basins. Systems containing approximately one, two, three and four molecular layers of water have followed gradients of 150 bar km-1 and 30Kkm-1, to a maximum burial depth of 6 km (900 bar and 460 K). Methane is coordinated to approximately 19 oxygen atoms, of which typically 6 are provided by the clay surface. Only in the three- and four-layer hydrates is methane able to leave the clay surface. Diffusion depends strongly on the porosity (water content) and burial depth: self-diffusion coefficients are in the range 0.12 × 10-9m2s-1 for water and 0.04 × 10−9m2s−1 < D < 8.64 × 10−9m2s−1 for methane. Bearing in mind that porosity decreases with burial depth, it is estimated that maximum diffusion occurs at around 3 km. This is in good agreement with the known location of methane reservoirs in sedimentary basins.