12 resultados para DIAMOND-LIKE CARBON

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon films with diamond like structures have been formed on different substrates at very low energies and temperatures by a plasma enhanced chemical vapor deposition process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with Ar as carrier gas. The films were grown at very high deposition rates. Deposition on Si, glass and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion and optical properties. Deposition rates up to 20 nm/s have been achieved at substrate temperatures below 100°C. The typical sp3 content of 60-75% in the films was determined by X-ray generated Auger electron spectroscopy. Hardness, reduced modulus and adhesion were measured using a MicroMaterials Nano Test Indenter/Scratch tester. Hardness was found to vary from 4 to 13 GPa depending on deposition conditions. Adhesion was significantly influenced by the substrate temperature and in situ DC cleaning. Hydrogen content in the film was measured by a combination of the Fourier transform infrared and Rutherford backscattering techniques. Advantages of these films are: low ion energy and deposition temperature, very high deposition rates, low capital cost of the equipment and the possibility of film properties being tailored according to the desired application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presented a detailed research work on diamond materials. Chapter 1 is an overall introduction of the thesis. In the Chapter 2, the literature review on the physical, chemical, optical, mechanical, as well as other properties of diamond materials are summarised. Followed by this chapter, several advanced diamond growth and characterisation techniques used in experimental work are also introduced. Then, the successful installation and applications of chemical vapour deposition system was demonstrated in Chapter 4. Diamond growth on a variety of different substrates has been investigated such as on silicon, diamond-like carbon or silica fibres. In Chapter 5, the single crystalline diamond substrate was used as the substrate to perform femtosecond laser inscription. The results proved the potentially feasibility of this technique, which could be utilised in fabricating future biochemistry microfluidic channels on diamond substrates. In Chapter 6, the hydrogen-terminated nanodiamond powder was studied using impedance spectroscopy. Its intrinsic electrical properties and its thermal stability were presented and analysed in details. As the first PhD student within Nanoscience Research Group at Aston, my initial research work was focused on the installation and testing of the microwave plasma enhanced chemical vapour deposition system (MPECVD), which will be beneficial to all the future researchers in the group. The fundamental of the on MPECVD system will be introduced in details. After optimisation of the growth parameters, the uniform diamond deposition has been achieved with a good surface coverage and uniformity. Furthermore, one of the most significant contributions of this work is the successful pattern inscription on diamond substrates by femtosecond laser system. Previous research of femtosecond laser inscription on diamond was simple lines or dots, with little characterisation techniques were used. In my research work, the femtosecond laser has been successfully used to inscribe patterns on diamond substrate and fully characterisation techniques, e.g. by SEM, Raman, XPS, as well as AFM, have been carried out. After the femtosecond laser inscription, the depth of microfluidic channels on diamond film has been found to be 300~400 nm, with a graphitic layer thickness of 165~190 nm. Another important outcome of this work is the first time to characterise the electrical properties of hydrogenterminated nanodiamond with impedance spectroscopy. Based on the experimental evaluation and mathematic fitting, the resistance of hydrogen-terminated nanodiamond reduced to 0.25 MO, which were four orders of magnitude lower than untreated nanodiamond. Meanwhile, a theoretical equivalent circuit has been proposed to fit the results. Furthermore, the hydrogenterminated nanodiamond samples were annealed at different temperature to study its thermal stability. The XPS and FTIR results indicate that hydrogen-terminated nanodiamond will start to oxidize over 100ºC and the C-H bonds can survive up to 400ºC. This research work reports the fundamental electrical properties of hydrogen-terminated nanodiamond, which can be used in future applications in physical or chemical area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to the tribology at the head~to~tape interface of linear tape recording systems, OnStream ADRTM system being used as an experimental platform, Combining experimental characterisation with computer modelling, a comprehensive picture of the mechanisms involved in a tape recording system is drawn. The work is designed to isolate the mechanisms responsible for the physical spacing between head and tape with the aim of minimising spacing losses and errors and optimising signal output. Standard heads-used in ADR current products-and prototype heads- DLC and SPL coated and dummy heads built from a AI203-TiC and alternative single-phase ceramics intended to constitute the head tape-bearing surface-are tested in controlled environment for up to 500 hours (exceptionally 1000 hours), Evidences of wear on the standard head are mainly observable as a preferential wear of the TiC phase of the AI203-TiC ceramic, The TiC grains are believed to delaminate due to a fatigue wear mechanism, a hypothesis further confirmed via modelling, locating the maximum von Mises equivalent stress at a depth equivalent to the TiC recession (20 to 30 nm). Debris of TiC delaminated residues is moreover found trapped within the pole-tip recession, assumed therefore to provide three~body abrasive particles, thus increasing the pole-tip recession. Iron rich stain is found over the cycled standard head surface (preferentially over the pole-tip and to a lesser extent over the TiC grains) at any environment condition except high temperature/humidity, where mainly organic stain was apparent, Temperature (locally or globally) affects staining rate and aspect; stain transfer is generally promoted at high temperature. Humidity affects transfer rate and quantity; low humidity produces, thinner stains at higher rate. Stain generally targets preferentially head materials with high electrical conductivity, i.e. Permalloy and TiC. Stains are found to decrease the friction at the head-to-tape interface, delay the TiC recession hollow-out and act as a protective soft coating reducing the pole-tip recession. This is obviously at the expense of an additional spacing at the head-to-tape interface of the order of 20 nm. Two kinds of wear resistant coating are tested: diamond like carbon (DLC) and superprotective layer (SPL), 10 nm and 20 to 40 nm thick, respectively. DLC coating disappears within 100 hours due possibly to abrasive and fatigue wear. SPL coatings are generally more resistant, particularly at high temperature and low humidity, possibly in relation with stain transfer. 20 nm coatings are found to rely on the substrate wear behaviour whereas 40 nm coatings are found to rely on the adhesive strength at the coating/substrate interface. These observations seem to locate the wear-driving forces 40 nm below the surface, hence indicate that for coatings in the 10 nm thickness range-· i,e. compatible with high-density recording-the substrate resistance must be taken into account. Single-phase ceramic as candidate for wear-resistant tape-bearing surface are tested in form of full-contour dummy-heads. The absence of a second phase eliminates the preferential wear observed at the AI203-TiC surface; very low wear rates and no evidence of brittle fracture are observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper oxide supported on nanoporous activated carbon (CuO-NPAC) is reported for the aqueous phase catalytic degradation of cyanotoxin microcystin-LR (MC-LR). The loading and spatial distribution of CuO throughout the NPAC matrix strongly influence the catalytic efficiency. CuO-NPAC synthesis was optimized with respect to the copper loading and thermal processing, and the physicochemical properties of the resulting materials were characterized by XRD, BET, TEM, SEM, EPR, TGA, XPS and FT-IR spectroscopy. EPR spin trapping and fluorescence spectroscopy showed in situ ˙OH formation via H2O2 over CuO-NPAC as the catalytically relevant oxidant. The impact of reaction conditions, notably CuO-NPAC loading, H2O2 concentration and solution pH, is discussed in relation to the reaction kinetics for MC-LR remediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical and thermal transport properties of the carbon nanotube bulk material compacted by spark plasma sintering have been investigated. The electrical conductivity of the as-prepared sample shows a lnT dependence from 4 to 50 K, after which the conductivity begins to increase approximately linearly with temperature. A magnetic field applied perpendicularly to the sample increases the electrical conductivity in the range of 0-8T at all testing temperatures, indicating that the sample possesses the two-dimensional weak localization at lower temperatures (?50 K), while behaviors like a semimetal at higher temperatures (?50 K). This material acts like a uniform compact consisting of randomly distributed two dimensional graphene layers. For the same material, the thermal conductivity is found to decrease almost linearly with decreasing temperature, similar to that of a single multi-walled carbon nanotube. Magnetic fields applied perpendicularly to the sample cause the thermal conductivity to decrease significantly, but the influence of the magnetic fields becomes weak when temperature increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbon is generated from various waste biomass sources like rice straw, wheat straw, wheat straw pellets, olive stones, pistachios shells, walnut shells, beech wood and hardcoal. After drying the biomass is pyrolysed in the temperature range of 500-600 °C at low heating rates of 10 K/min. The activation of the chars is performed as steam activation at temperatures between 800 °C and 900 °C. Both the pyrolysis and activation experiments were run in lab-scale facilities. It is shown that nut shells provide high active surfaces of 1000-1300 m/g whereas the active surface of straw matters does hardly exceed 800 m/g which might be a result of the high ash content of the straws and the slightly higher carbon content of the nut shells. The active surface is detected by BET method. Besides the testing of a many types of biomass for the suitability as base material in the activated carbon production process, the experiments allow for the determination of production parameters like heating rate and pyrolysis temperature, activation time and temperature as well as steam flux which are necessary for the scale up of the process chain. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor- reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon thin films were synthesized using the original Thermionic Vacuum Arc (TVA) method. Mechanical properties were investigated using Micro Materials NanoTest 500 instrument using a NT Berkovich indenter. XPS provides a quantitative analysis of the surface composition and X-ray generated Auger electron spectroscopy (XAES) performed by Thermoelectron ESCALAB 250 revealed information about the sp3:sp2 ratio of the carbon bondings. Structure and morphology was studied by Transmission Electron Microscope CM120ST, providing information on the grain size distribution of the crystalline diamond structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.