2 resultados para DIAMINES

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was aimed at determining whether the protein crosslinking enzymes, transglutaminases, had the potential to be used as tanning agents, using native bovine hide and purified soluble rat tail collagen as real and model substrates, respectively. We demonstrate that transglutaminases (TGs) were capable of covalently crosslinking collagen molecules together such that on average every collagen molecule contained at least one epsilon(gamma-glutamyl)lysine crosslink. However, transglutaminase-mediated crosslinking did not affect the denaturation temperature of either native bovine hide or soluble rat tail collagens when used in isolation or together with other proteins and bifunctional diamines as crosslinking facilitators. In an initial study into the effect of TG-mediated crosslinking on the tensile strength of chrome-tanned bovine hide, such crosslinking led to a 30 per cent decrease in tensile strength. Despite a change in the gel melting point mediated by epsilon(gamma-glutamyl)lysine crosslinking, the use of transglutaminases as alternative tanning agents seems unlikely given the present data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalisation of polystyrene, PS, and ethylene-co-propylene-co-cyclopentadiene terpolymer, EPDM, with acrylic acid, AA, in a melt reactive processing procedure, in the presence of peroxide, trigonox 101, and coagents, Divinyl benzene, DVB (for PS), and trimethylolpropane triacrylate, TRIS (for EPDM), were successfully carried out. The level of grafting of the AA, as determined by infrared analysis, was significantly enhanced by the coagents. The grafting reaction of AA takes place simultaneously with homopolymerisation of the monomers, melt degradation and crosslinking reactions of the polymers. The extent of these competing reactions were inferred from measurements of melt flow index and insoluble gel content. Through a judicious use of both the peroxide and the coagent, particularly TRIS, unwanted side reactions were minimized. Five different processing methods were investigated for both functionalisation experiments; the direct addition of the pre-mixed polymer with peroxide and reactive modifiers was found to give optimum condition for grafting. The functionalised PS, F-PS, and EPDM, F-EPD, and maleinised polypropylene carrying a potential antioxidant, N-(4-anilinophenyl maleimide), F-PP were melt blended in binary mixtures of F-PS/F-EPD and F-PP/F-EPD in the presence (or absence) of organic diamines which act as an interlinking agent, e.g, Ethylene Diamine, EDA, and Hexamethylene Diamine, HEMDA. The presence of an interlinking agent, particularly HEMDA shows significant enhancement in the mechanical properties of the blend, suggesting that the copolymer formed has acted as compatibiliser to the otherwise incompatible polymer pairs. The functionalised and amidised blends, F and A-PSIEPDM (SPOI) and F and A-PPIEPDM (SPD2) were subsequently used as compatibiliser concentrates in the corresponding PSIEPDM and PPIEPDM blends containing various weight propotion of the homopolymers. The SPD1 caused general decreased in tensile strength, albeit increased in drop impact strength particularly in blend containing high PS content (80%). The SPD2 was particularly effective in enhancing impact strength in blends containing low weight ratio of PP (<70%). The SPD2 was also a good thermal antioxidant albeit less effective than commercial antioxidant. In all blends the evidence of compatibility was examined by scanning electron microscopy.