10 resultados para DETECTION CELL

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot-protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been reported as a wound response protein. Once over-expressed by cells under stress such as during wound healing or following tissue damage, TG2 can be secreted and deposited into extracellular matrix, where it forms a heterocomplex (TG-FN) with the abundant matrix protein fibronectin (FN). A further cellular response elicited after tissue damage is that of matrix remodelling leading to the release of the Arg-Gly-Asp (RGD) containing matrix fragments by matrix matelloproteinases (MMPs). These peptides are able to block the interaction between integrin cell surface receptors and ECM proteins, leading to the loss of cell adhesion and ultimately Anoikis. This study provides a mechanism for TG2, as a stress-induced matrix protein, in protecting the cells from the RGD-dependent loss of cell adhesion and rescuing the cells from Anoikis. Mouse fibroblasts were used as a major model for this study, including different types of cell surface receptor knockout mouse embryonic fibroblasts (MEFs) (such as syndecan-4, a5, ß1 or ß3 integrins). In addition specific syndecan-2 targetting siRNAs, ß1 integrin and a4ß1 integrin functional blocking antibodies, and a specific targeting peptide against a5ß1 integrin A5-1 were used to investigate the involvement of these receptors in the RGD-independent cell adhesion on TG-FN. Crucial for TG-FN to compensate the RGD-independent cell adhesion and actin cytoskeleton formation is the direct interaction between the heparan sulfate chains of syndecan-4 and TG2, which elicits the inside-out signalling of a5ß1 integrin and the intracellular activation of syndecan-2 by protein kinase C a (PKCa). By using specific inhibitors, a cell-permeable inhibiting peptide and the detection of the phosphorylation sites for protein kinases and/or the translocation of PKCa via Western blotting, the activation of PKCa, focal adhesion kinase (FAK), ERK1/2 and Rho kinase (ROCK) were confirmed as downstream signalling molecules. Importantly, this study also investigated the influence of TG-FN on matrix turnover and demonstrated that TG-FN can restore the RGD-independent FN deposition process via an a5ß1 integrin and syndecan-4/2 co-signalling pathway linked by PKCa in a transamidating-independent manner. These data provide a novel function for TG2 in wound healing and matrix turnover which is a key event in a number of both physiological and pathological processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In inflammatory diseases, release of oxidants leads to oxidative damage to proteins. The precise nature of oxidative damage to individual proteins depends on the oxidant involved. Chlorination and nitration are markers of modification by the myeloperoxidase-H2O2-Cl- system and nitric oxide-derived oxidants, respectively. Although these modifications can be detected by western blotting, currently no reliable method exists to identify the specific sites damage to individual proteins in complex mixtures such as clinical samples. We are developing novel LCMS2 and precursor ion scanning methods to address this. LC-MS2 allows separation of peptides and detection of mass changes in oxidized residues on fragmentation of the peptides. We have identified indicative fragment ions for chlorotyrosine, nitrotyrosine, hydroxytyrosine and hydroxytryptophan. A nano-LC/MS3 method involving the dissociation of immonium ions to give specific fragments for the oxidized residues has been developed to overcome the problem of false positives from ions isobaric to these immonium ions that exist in unmodified peptides. The approach has proved able to identify precise protein modifications in individual proteins and mixtures of proteins. An alternative methodology involves multiple reaction monitoring for precursors and fragment ions are specific to oxidized and chlorinated proteins, and this has been tested with human serum albumin. Our ultimate aim is to apply this methodology to the detection of oxidative post-translational modifications in clinical samples for disease diagnosis, monitoring the outcomes of therapy, and improved understanding of disease biochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with unpractically low DNA yields. We have optimized tbe procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 μg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required. © 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylserine (PS) is preferentially located in the inner leaflet of the cell membrane, and translocation of PS oxidized in fatty acyl chains to the outside of membrane has been reported as signaling to macrophage receptors to clear apoptotic cells. It was recently shown that PS can be oxidized in serine moiety of polar head-group. In the present work, a targeted lipidomic approach was applied to detecting OxPS modified at the polar head-group in keratinocytes that were exposed to the radical generator AAPH. Glycerophosphoacetic acid derivatives (GPAA) were found to be the major oxidation products of OxPS modified at the polar head-group during oxidation induced by AAPH-generated radicals, similarly to previous observations for the oxidation induced by OH radical. The neutral loss scan of 58Da and a novel precursor ion scan of m/z 137.1 (HOPO3CH2COOH) allowed the recognition of GPAA derivatives in the total lipid extracts obtained from HaCaT cells treated with AAPH. The positive identification of serine head group oxidation products in cells under controlled oxidative conditions opens new perspectives and justifies further studies in other cellular environments in order to understand fully the role of PS polar head-group oxidation in cell homeostasis and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical redox ratio as a measure of cellular metabolism is determined by an altered ratio between endogenous fluorophores NADH and flavin adenine dinucleotide (FAD). Although reported for other cancer sites, differences in optical redox ratio between cancerous and normal urothelial cells have not previously been reported. Here, we report a method for the detection of cellular metabolic states using flow cytometry based on autofluorescence, and a statistically significant increase in the redox ratio of bladder cancer cells compared to healthy controls. Urinary bladder cancer and normal healthy urothelial cell lines were cultured and redox overview was assessed using flow cytometry. Further localisation of fluorescence in the same cells was carried out using confocal microscopy. Multiple experiments show correlation between cell type and redox ratio, clearly differentiating between healthy cells and cancer cells. Based on our preliminary results, therefore, we believe that this data contributes to current understanding of bladder tissue fluorescence and can inform the design of endoscopic probes. This approach also has significant potential as a diagnostic tool for discrimination of cancer cells among shed urothelial cells in voided urine, and could lay the groundwork for an automated system for population screening for bladder cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using biomimetic chemical reduction or Clostridium perfringens cell extract containing azoreductase, the dimer-fluorescent probe 2,4-O-bisdansyl-6,7- diazabicyclooct-6-ene, which possesses a conformationally constrained cis-azo bridge, is reduced to the tetra-equatorial 2,4-O-bisdansyl-cyclohexyl-3,5- bisammonium salt which exhibits fluorescence indicative of a dansyl monomer. © 2012 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cysteine is a thiol containing amino acid that readily undergoes oxidation by reactive oxygen species (ROS) to form sulphenic (R-SOH) sulphinic (RSO2H) and sulphonic (RSO3H) acids. Thiol modifications of cysteine have been implicated as modulators of cellular processes and represent significant biological modifications that occur during oxidative stress and cell signalling. However, the different oxidation states are difficult to monitor in a physiological setting due to the limited availability of experimental tools. Therefore it is of interest to synthesise and use a chemical probe that selectively recognises the reversible oxidation state of cysteine sulphenic acid to understand more about oxidative signalling. The aim of this thesis was to investigate a synthetic approach for novel fluorescent probe synthesis, for the specific detection of cysteine sulphenic acids by fluorescence spectroscopy and confocal microscopy. N-[2-(Anthracen-2-ylamino)-2-oxoethyl]-3,5-dioxocyclohexanecarboxamide was synthesised in a multistep synthesis and characterised by nuclear magnetic resonance spectroscopy. The optimisation of conditions needed for sulphenic acid formation in a purified protein using human serum albumin (HSA) and the commercially available biotin tagged probe 3-(2,4-dioxocyclohexyl)propyl-5-((3aR,6S,6aS)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-6-yl)pentanoate (DCP-Bio1) were identified. This approach was extended to detect sulphenic acids in Jurkat T cells and CD4+ T cells pre- and post-stimulus. Buthionine sulfoximine (BSO) was used to manipulate the endogenous antioxidant glutathione (GSH) in human CD4+ T cells. Then the surface protein thiol levels and sulphenic acid formation was examined. T cells were also activated by the lectin phytohaemagglutinin-L (PHA-L) and formation of sulphenic acid was investigated using SDS-PAGE, western blotting and confocal microscopy. Resting Jurkat cells have two prominent protein bands that have sulphenic acid modifications whereas resting CD4+ T cells have an additional band present. When cells were treated with BSO the number of bands increased whereas activation reduced the number of proteins that were modified. The identities of the protein bands containing sulphenic acids were explored by mass spectrometry. Cysteine oxidation was observed in redox, metabolic and cytoskeletal proteins. In summary, a novel fluorescent probe for detection of cysteine sulphenic acids has been synthesised alongside a model system that introduces cysteine sulphenic acid in primary T cells. This probe has potential application in the subcellular localisation of cysteine oxidation during T cell signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene-based silica fiber-optic sensors, with high sensitivity, fast response, and low cost, have shown great promise for gas sensing applications. In this letter, by covering a monolayer of p-doped graphene on a D-shaped microstructured polymer fiber Bragg grating (FBG), we propose and demonstrate a novel biochemical probe sensor, the graphene-based D-shaped polymer FBG (GDPFBG). Due to the graphene-based surface evanescent field enhancement, this sensor shows high sensitivity to detect surrounding biochemical parameters. By monitoring the Bragg peak locations of the GDPFBG online, human erythrocyte (red blood cell) solutions with different cellular concentrations ranging from 0 to 104 ppm were detected precisely, with the maximum resolution of sub-ppm. Such a sensor is structurally compact, is clinically acceptable, and provides good recoverability, offering a state-of-the-art polymer-fiber-based sensing platform for highly sensitive in situ and in vivo cell detection applications.