72 resultados para DEA analysis
em Aston University Research Archive
Resumo:
As student numbers in higher education in the UK have expanded during recent years, it has become increasingly important to understand its cost structure. This study applies Data Envelopment Analysis (DEA) to higher education institutions in England to assess their cost structure, efficiency and productivity. The paper complements an earlier study that used parametric methods to analyse the same panel data. Interestingly, DEA provides estimates of subject-specific unit costs that are in the same ballpark as those provided by the parametric methods. The paper then extends the previous analysis and finds that further student number increases of the order of 20–27% are feasible through exploiting operating and scale efficiency gains and also adjusting student mix. Finally the paper uses a Malmquist index approach to assess productivity change in the UK higher education. The results reveal that for a majority of institutions productivity has actually decreased during the study period.
Resumo:
The potential for the use of DEA and simulation in a mutually supporting role in guiding operating units to improved performance is presented. An analysis following a three-stage process is suggested. Stage one involves obtaining the data for the DEA analysis. This can be sourced from historical data, simulated data or a combination of the two. Stage two involves the DEA analysis that identifies benchmark operating units. In the third stage simulation can now be used in order to offer practical guidance to operating units towards improved performance. This can be achieved by the use of sensitivity analysis of the benchmark unit using a simulation model to offer direct support as to the feasibility and efficiency of any variations in operating practices to be tested. Alternatively, the simulation can be used as a mechanism to transmit the practices of the benchmark unit to weaker performing units by building a simulation model of the weaker unit to the process design of the benchmark unit. The model can then compare performance of the current and benchmark process designs. Quantifying improvement in this way provides a useful driver to any process change initiative that is required to bring the performance of weaker units up to the best in class. © 2005 Operational Research Society Ltd. All rights reserved.
Resumo:
The influence of IT investment on hospital efficiency and quality are of great interest to healthcare executives as well as insurers. Few studies have examined how IT investments influence both efficiency and quality or whether there is an optimal IT investment level that influences both in the desired direction. Decision makers in healthcare wonder if there are tradeoffs between their pursuit of hospital operational efficiency and quality. Our study involving a 2-stage double bootstrap DEA analysis of 187 US hospitals over 2. years found direct effects of IT investment upon service quality and a moderating effect of quality upon operational efficiency. Further, our findings indicate a U-shaped relationship between IT investments and operational efficiency suggesting that IT investments have diminishing returns beyond a certain point.
Resumo:
Since the original Data Envelopment Analysis (DEA) study by Charnes et al. [Measuring the efficiency of decision-making units. European Journal of Operational Research 1978;2(6):429–44], there has been rapid and continuous growth in the field. As a result, a considerable amount of published research has appeared, with a significant portion focused on DEA applications of efficiency and productivity in both public and private sector activities. While several bibliographic collections have been reported, a comprehensive listing and analysis of DEA research covering its first 30 years of history is not available. This paper thus presents an extensive, if not nearly complete, listing of DEA research covering theoretical developments as well as “real-world” applications from inception to the year 2007. A listing of the most utilized/relevant journals, a keyword analysis, and selected statistics are presented.
Resumo:
Maize is the main staple food for most Kenyan households, and it predominates where smallholder, as well as large-scale, farming takes place. In the sugarcane growing areas of Western Kenya, there is pressure on farmers on whether to grow food crops, or grow sugarcane, which is the main cash crop. Further, with small and diminishing land sizes, the question of productivity and efficiency, both for cash and food crops is of great importance. This paper, therefore, uses a two-step estimation technique (DEA meta-frontier and Tobit Regression) to highlight the inefficiencies in maize cultivation, and their causes in Western Kenya.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
We propose a new mathematical model for efficiency analysis, which combines DEA methodology with an old idea-Ratio Analysis. Our model, called DEA-R, treats all possible ratios "output/input" as outputs within the standard DEA model. Although DEA and DEA-R generate different summary measures for efficiency, the two measures are comparable. Our mathematical and empirical comparisons establish the validity of DEA-R model in its own right. The key advantage of DEA-R over DEA is that it allows effective integration of the model with experts' opinions via flexible restrictive conditions on individual "output/input" pairs. © 2007 Springer Science+Business Media, LLC.
Resumo:
Data envelopment analysis (DEA) is defined based on observed units and by finding the distance of each unit to the border of estimated production possibility set (PPS). The convexity is one of the underlying assumptions of the PPS. This paper shows some difficulties of using standard DEA models in the presence of input-ratios and/or output-ratios. The paper defines a new convexity assumption when data includes a ratio variable. Then it proposes a series of modified DEA models which are capable to rectify this problem.
Resumo:
Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
This paper introduces a compact form for the maximum value of the non-Archimedean in Data Envelopment Analysis (DEA) models applied for the technology selection, without the need to solve a linear programming (LP). Using this method the computational performance the common weight multi-criteria decision-making (MCDM) DEA model proposed by Karsak and Ahiska (International Journal of Production Research, 2005, 43(8), 1537-1554) is improved. This improvement is significant when computational issues and complexity analysis are a concern.
Resumo:
Analysis of the production efficiency of industrialized countries, questioning whether certain countries perform better than others in producing more output with the same or less inputs, is an example of the importance of estimating production relationships. In order to estimate efficiency one needs an appropriate model for the two major inputs into production activity, namely labour and capital. A physical asset once installed is capable of contributing several years of output. This implies that investments made in previous years must be taken into account in order to produce a measure of the efficiency and productivity for any given year. The purpose of this article is to introduce a dynamic efficiency model and compare the results with previous work on the analysis of efficiency and productivity of OECD countries. The article proposes that dynamic models capture efficiency better than static models.