7 resultados para DDoS attacks
em Aston University Research Archive
Resumo:
The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions. © 2010 John Wiley & Sons, Ltd.
Resumo:
The security and reliability of a class of public-key cryptosystems against attacks by unauthorized parties, who had acquired partial knowledge of one or more of the private key components and/or of the message, were discussed. The standard statistical mechanical methods of dealing with diluted spin systems with replica symmetric considerations were analyzed. The dynamical transition which defined decryption success in practical situation was studied. The phase diagrams which showed the dynamical threshold as a function of the partial acquired knowledge of the private key were also presented.
Resumo:
The introduction of agent technology raises several security issues that are beyond conventional security mechanisms capability and considerations, but research in protecting the agent from malicious host attack is evolving. This research proposes two approaches to protecting an agent from being attacked by a malicious host. The first approach consists of an obfuscation algorithm that is able to protect the confidentiality of an agent and make it more difficult for a malicious host to spy on the agent. The algorithm uses multiple polynomial functions with multiple random inputs to convert an agent's critical data to a value that is meaningless to the malicious host. The effectiveness of the obfuscation algorithm is enhanced by addition of noise code. The second approach consists of a mechanism that is able to protect the integrity of the agent using state information, recorded during the agent execution process in a remote host environment, to detect a manipulation attack by a malicious host. Both approaches are implemented using a master-slave agent architecture that operates on a distributed migration pattern. Two sets of experimental test were conducted. The first set of experiments measures the migration and migration+computation overheads of the itinerary and distributed migration patterns. The second set of experiments is used to measure the security overhead of the proposed approaches. The protection of the agent is assessed by analysis of its effectiveness under known attacks. Finally, an agent-based application, known as Secure Flight Finder Agent-based System (SecureFAS) is developed, in order to prove the function of the proposed approaches.
Resumo:
INTRODUCTION: We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. METHODS: Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1-400 Hz and 450-750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. RESULTS: Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. CONCLUSIONS: This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.
Resumo:
Systems security is essential for the efficient operation of all organizations. Indeed, most large firms employ a designated ‘Chief Information Security Officer’ to coordinate the operational aspects of the organization’s information security. Part of this role is in planning investment responses to information security threats against the firm’s corporate network infrastructure. To this end, we develop and estimate a vector equation system of threats to 10 important IP services, using industry standard SANS data on threats to various components of a firm’s information system over the period January 2003 – February 2011. Our results reveal strong evidence of contagion between such attacks, with attacks on ssh and Secure Web Server indicating increased attack activity on other ports. Security managers who ignore such contagious inter-relationships may underestimate the underlying risk to their systems’ defence of security attributes, such as sensitivity and criticality, and thus delay appropriate information security investments.