6 resultados para D-space
em Aston University Research Archive
Resumo:
Motion discontinuities can signal object boundaries where few or no other cues, such as luminance, colour, or texture, are available. Hence, motion-defined contours are an ecologically important counterpart to luminance contours. We developed a novel motion-defined Gabor stimulus to investigate the nature of neural operators analysing visual motion fields in order to draw parallels with known luminance operators. Luminance-defined Gabors have been successfully used to discern the spatial-extent and spatial-frequency specificity of possible visual contour detectors. We now extend these studies into the motion domain. We define a stimulus using limited-lifetime moving dots whose velocity is described over 2-D space by a Gabor pattern surrounded by randomly moving dots. Participants were asked to determine whether the orientation of the Gabor pattern (and hence of the motion contours) was vertical or horizontal in a 2AFC task, and the proportion of correct responses was recorded. We found that with practice participants became highly proficient at this task, able in certain cases to reach 90% accuracy with only 12 limited-lifetime dots. However, for both practised and novice participants we found that the ability to detect a single boundary saturates with the size of the Gaussian envelope of the Gabor at approximately 5 deg full-width at half-height. At this optimal size we then varied spatial frequency and found the optimum was at the lowest measured spatial frequency (0.1 cycle deg-1 ) and then steadily decreased with higher spatial frequencies, suggesting that motion contour detectors may be specifically tuned to a single, isolated edge.
Resumo:
Previous contrast discrimination experiments have shown that luminance contrast is summed across ocular (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) and spatial (T. S. Meese & R. J. Summers, 2007) dimensions at threshold and above. However, is this process sufficiently general to operate across the conjunction of eyes and space? Here we used a "Swiss cheese" stimulus where the blurred "holes" in sine-wave carriers were of equal area to the blurred target ("cheese") regions. The locations of the target regions in the monocular image pairs were interdigitated across eyes such that their binocular sum was a uniform grating. When pedestal contrasts were above threshold, the monocular neural images contained strong evidence that the high-contrast regions in the two eyes did not overlap. Nevertheless, sensitivity to dual contrast increments (i.e., to contrast increments in different locations in the two eyes) was a factor of ∼1.7 greater than to single increments (i.e., increments in a single eye), comparable with conventional binocular summation. This provides evidence for a contiguous area summation process that operates at all contrasts and is influenced little, if at all, by eye of origin. A three-stage model of contrast gain control fitted the results and possessed the properties of ocularity invariance and area invariance owing to its cascade of normalization stages. The implications for a population code for pattern size are discussed.
Resumo:
We describe a free space quantum cryptography system which is designed to allow continuous unattended key exchanges for periods of several days, and over ranges of a few kilometres. The system uses a four-laser faint-pulse transmission system running at a pulse rate of 10MHz to generate the required four alternative polarization states. The receiver module similarly automatically selects a measurement basis and performs polarization measurements with four avalanche photodiodes. The controlling software can implement the full key exchange including sifting, error correction, and privacy amplification required to generate a secure key.
Resumo:
This paper examines the extent to which both network structure and spatial factors impact on the organizational performance of universities as measured by the generation of industrial research income. Drawing on data concerning the interactions of universities in the UK with large research and development (R&D)-intensive firms, the paper employs both social network analysis and regression analysis. It is found that the structural position of a university within networks with large R&D-intensive firms is significantly associated with the level of research income gained from industry. Spatial factors, on the other hand, are not found to be clearly associated with performance, suggesting that universities operate on a level playing field across regional environments once other factors are controlled for.
Resumo:
The determination of the displacement and the space-dependent force acting on a vibrating structure from measured final or time-average displacement observation is thoroughly investigated. Several aspects related to the existence and uniqueness of a solution of the linear but ill-posed inverse force problems are highlighted. After that, in order to capture the solution a variational formulation is proposed and the gradient of the least-squares functional that is minimized is rigorously and explicitly derived. Numerical results obtained using the Landweber method and the conjugate gradient method are presented and discussed illustrating the convergence of the iterative procedures for exact input data. Furthermore, for noisy data the semi-convergence phenomenon appears, as expected, and stability is restored by stopping the iterations according to the discrepancy principle criterion once the residual becomes close to the amount of noise. The present investigation will be significant to researchers concerned with wave propagation and control of vibrating structures.
Resumo:
We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.