12 resultados para D Genetic association studies
em Aston University Research Archive
Resumo:
Background - Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5–10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. Methods - We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. Results - We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. Conclusions - A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.
Resumo:
Context: Genetic, neuroimaging, and molecular neurobiological evidence support the hypothesis that the disconnectivity syndrome in schizophrenia (SZ) could arise from failures of saltatory conduction and abnormalities at the nodes of Ranvier (NOR) interface where myelin and axons interact. Objective: To identify abnormalities in the expression of oligodendroglial genes and proteins that participate in the formation, maintenance, and integrity of the NOR in SZ. Design: The messenger RNA (mRNA) expression levels of multiple NOR genes were quantified in 2 independent postmortem brain cohorts of individuals with SZ, and generalizability to protein expression was confirmed. The effect of the ANK3 genotype on the mRNA expression level was tested in postmortem human brain. Case-control analysis tested the association of the ANK3 genotype with SZ. The ANK3 genotype's influence on cognitive task performance and functional magnetic resonance imaging activation was tested in 2 independent cohorts of healthy individuals. Setting: Research hospital. Patients: Postmortem samples from patients with SZ and healthy controls were used for the brain expression study (n=46) and the case-control analysis (n=272). Healthy white men and women participated in the cognitive (n=513) and neuroimaging (n=52) studies. Main Outcome Measures: The mRNA and protein levels in postmortem brain samples, genetic association with schizophrenia, cognitive performance, and blood oxygenation level-dependent functional magnetic resonance imaging. Results: The mRNA expression of multiple NOR genes was decreased in schizophrenia. The ANK3 rs9804190 C allele was associated with lower ANK3 mRNA expression levels, higher risk for SZ in the case-control cohort, and poorer working memory and executive function performance and increased prefrontal activation during a working memory task in healthy individuals. Conclusions: These results point to abnormalities in the expression of genes and protein associated with the integrity of the NOR and suggest them as substrates for the disconnectivity syndrome in SZ. The association of ANK3 with lower brain mRNA expression levels implicates a molecular mechanism for its genetic, clinical, and cognitive associations with SZ. ©2012 American Medical Association. All rights reserved.
Resumo:
A detailed investigation has been undertaken into the field induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated and dielectric coated metallic electrodes. These processes have been investigated using two dedicated experimental systems that were developed for this study. The first is a novel combined photo/field emission microscope, which employs a UV source to stimulate photo-electrons from the sample surface in order to generate a topographical image. This system utilises an electrostatic lens column to provide identical optical properties under the different operating conditions required for purely topographical and combined photo/field imaging. The system has been demonstrated to have a resolution approaching 1m. Emission images have been obtained from carbon emission sites using this system to reveal that emission may occur from the edge triple junction or from the bulk of the carbon particle. An existing UHV electron spectrometer has been extensively rebuilt to incorporate a computer control and data acquisition system, improved sample handling and manipulation and a specimen heating stage. Details are given of a comprehensive study into the effects of sample heating on the emission process under conditions of both bulk and transient heating. Similar studies were also performed under conditions of both zero and high applied field. These show that the properties of emission sites are strongly temperature and field dependent thus indicating that the emission process is `non-metallic' in nature. The results have been shown to be consistent with an existing hot electron emission model.
Resumo:
Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.
Resumo:
IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.
Resumo:
Type 2 diabetes (T2D) is characterized by impaired beta cell function and insulin resistance. T2D susceptibility genes identified by Genome-wide association studies (GWAS) are likely to have roles in both impaired insulin secretion from the beta cell as well as insulin resistance. The aim of this study was to use gene expression profiling to assess the effect of the diabetic milieu on the expression of genes involved in both insulin secretion and insulin resistance. We measured the expression of 43 T2D susceptibility genes in the islets, adipose and liver of leptin-deficient Ob/Ob mice compared with Ob/+ littermates. The same panel of genes were also profiled in cultured rodent adipocytes, hepatocytes and beta cells in response to high glucose conditions, to distinguish expression effects due to elevated glycemia from those on the causal pathway to diabetes or induced by other factors in the diabetic microenviroment. We found widespread deregulation of these genes in tissues from Ob/Ob mice, with differential regulation of 23 genes in adipose, 18 genes in liver and one gene (Tcf7l2) in islets of diabetic animals (Ob/Ob) compared to control (Ob/+) animals. However, these expression changes were in most cases not noted in glucose-treated adipocyte, hepatocyte or beta cell lines, indicating that they may not be an effect of hyperglycemia alone. This study indicates that expression changes are apparent with diabetes in both the insulin producing beta cells, but also in peripheral tissues involved in insulin resistance. This suggests that incidence or progression of diabetic phenotypes in a mouse model of diabetes is driven by both secretory and peripheral defects. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart New York.
Resumo:
Removal of dead or diseased cells is crucial feature of apoptosis for managing many biological processes such as tissue remodelling, tissue homeostasis and resolution and control of immune responses throughout life. Tissue transglutaminase (TG2) is a protein crosslinking enzyme that has been implicated in apoptotic cell clearance but also mediates many important cell functions including cell adhesion, migration and monocyte-macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4, ß1 and ß3 integrin. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise extracellular role of TG2 in apoptotic cell clearance remains ill-defined. This thesis addresses macrophage TG2 in cell corpse clearance. TG2 expression (cytosolic and cell surface) in human macrophages was revealed and data demonstrate that loss of TG2 activity through the use of inhibitors of function, including cellimpermeable inhibitors significantly inhibit the ability of macrophages to clear apoptotic cells (AC). This includes reduced macrophage recruitment to and binding of apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus it defines for the first time a role for TG2 activity at the cell surface of human macrophages in multiple stages of AC clearance and proposed that TG2, in association with heparan sulphates, may exert its effect on AC clearance via crosslinking of CD44.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.