10 resultados para Cytoplasmic filaments

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 µm; IIB, K(d) = 8 µm; IIC, K(d) = 1.0 µm). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study tested three hypotheses: (1) that there is clustering of the neuronal cytoplasmic inclusions (NCI), astrocytic plaques (AP) and ballooned neurons (BN) in corticobasal degeneration (CBD), (2) that the clusters of NCI and BN are not spatially correlated, and (3) that the lesions are correlated with disease ‘stage’. In 50% of the regions, clusters of lesions were 400–800 µm in diameter and regularly distributed parallel to the tissue boundary. Clusters of NCI and BN were larger in laminae II/III and V/VI, respectively. In a third of regions, the clusters of BN and NCI were negatively spatially correlated. Cluster size of the BN in the parahippocampal gyrus (PHG) was positively correlated with disease ‘stage’. The data suggest the following: (1) degeneration of the cortico-cortical pathways in CBD, (2) clusters of NCI and BN may affect different anatomical pathways and (3) BN may develop after the NCI in the PHG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cases of multiple system atrophy (MSA), glial cytoplasmic inclusions (GCI) were distributed randomly or present in large diffuse clusters (>1,600 μm in diameter) in most areas studied. These spatial patterns contrast with those reported for filamentous neuronal inclusions in the tauopathies and α-synucleinopathies. © 2003 Movement Disorder Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tau positive neuronal cytoplasmic inclusions (NCI) are the ‘hallmark’ pathological feature of several neurodegenerative diseases collectively known as the tauopathies. This study compared the spatial patterns of various types of NCI in selected tauopathies including the neurofibrillary tangles (NFT) in Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), Pick bodies (PB) in Pick’s disease (PiD), and the tau positive (tau+) neurons in corticobasal degeneration (CBD). In the cerebral cortex of these disorders, the tau+ NCI were distributed in clusters and in a significant proportion of analyses, the clusters were distributed with a regular periodicity parallel to the pia mater. The inclusions in AD, PiD and CBD exhibited a similar range of spatial patterns but in PSP were less frequently clustered and more frequently randomly distributed. In gyri where the NCI were clustered, there was a significant difference in mean cluster size between disorders. Hence, clusters of NFT in AD were larger than those in PSP and the tau+ neurons in CBD and clusters of PB in PiD were larger than the tau+ neurons in CBD and the NFT in PSP. The cluster size of the tau+ neurons in CBD was similar to the NFT in PSP. The data suggest that the formation of clusters of NCI, regularly distributed parallel to the pia mater, is a common feature of the tauopathies indicating similar patterns of cortical degeneration and pathogenic mechanisms across different diseases. Furthermore, the data suggest that cortical degeneration affecting the short and long cortico-cortical pathways may be a characteristic of the tauopathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) is an RNA binding protein encoded by the TARDPB gene. Abnormal aggregations of TDP-43 in neurons in the form of neuronal cytoplasmic inclusions (NCI) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of TDP-43 in FTLD-TDP, the spatial patterns of the NCI were studied in frontal and temporal cortex of FTLD-TDP cases using a phosphorylation dependent anti-TDP-43 antibody (pTDP-43). In many regions, the NCI formed clusters and the clusters were distributed regularly parallel to the tissue boundary. In about 35% of cortical regions, cluster size of the NCI was within the size range of the modular columns of the cortex. The spatial patterns of the pTDP-immunoreactive inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody and also similar to inclusions characterized by other molecular pathologies such as tau, ?-synuclein and ‘fused in sarcoma’ (FUS). In conclusion, the data suggest degeneration of cortical and hippocampal anatomical pathways associated with accumulation of cellular pTDP-43 is characteristic of FTLD-TDP. In addition, the data are consistent with the hypothesis of cell to cell transfer of pTDP-43 within the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tauopathies are a major molecular group of neurodegenerative disorders characterised by the deposition of abnormal cellular aggregates of the microtubule associated protein (MAP) tau in the form of neuronal cytoplasmic inclusions (NCI). Recent research suggests that cell to cell propagation of pathogenic tau may be involved in the neurodegeneration of these disorders. If pathogenic tau spreads along anatomical pathways it may give rise to specific spatial patterns of the NCI in brain tissue. To test this hypothesis, the spatial patterns of NCI in cerebral cortical regions were compared in tissue sections taken from five major tauopathies: (1) argyrophilic grain disease (AGD), (2) Alzheimer's disease (AD), (3) corticobasal degeneration (CBD), (4) Pick's disease (PiD), and (5) progressive supranuclear palsy (PSP). In the cerebral cortex of these disorders, NCI were frequently aggregated into clusters and the clusters were regularly distributed parallel to the pia mater. In a significant proportion of regions, the mean size of the regularly distributed clusters of NCI was in the range 400 – 800 m, measured parallel to the pia mater, approximating to the dimension of cell columns associated with the cortico-cortical anatomical pathways. Hence, the data suggest that cortical NCI in the tauopathies exhibit a spatial pattern in the cortex which could result from the spread of pathogenic tau along anatomical pathways. Treatments designed to protect the cortex from tau propagation may therefore be applicable across several different disorders within this molecular group.