10 resultados para Cytochrome P-450 Enzyme System
em Aston University Research Archive
Resumo:
Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KWKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.The industrial solvent N,N-dimethylformamide (DMF) and the investigational anti-tumour agent N-methylformamide (NMF) cause liver damage in rodents and humans. The hepatotoxicity of N-alkylformamides is linked to their metabolism to N-alkylcarbamic acid thioesters. The enzymatic details of this pathway were investigated. Hepatocytes isolated from BALB/c mice which had been pretreated with acetone, an inducer of the cytochrome P-450 isozyme CYP2E1, were incubated with NMF (10mM). NMF caused extensive toxicity (> 90% ) as determined by lactate dehydrogenase (LDH) release, compared to cells from untreated animals. Incubation of liver cells with NMF for 6 hrs caused 60±17% LDH release whilst in the presence of DMSO (10mM), an alternative substrate for CYP2E1, LDH release was reduced to 20±10% . The metabolism of NMF to S-(N-methylcarbamoyl)glutathione (SMG) was measured in incubates with liver microsomes from mice, rats or humans. Metabolism of NMF was elevated in microsomes isolated from rats and mice pretreated with acetone, by 339% and 183% respectively. Pretreatment of animals with 4-methylpyrazole induced the metabolism of NMF to 280% by rat microsomes, but was without effect on NMF metabolism by mouse microsomes. The CYP2E1 inhibitors or alternative substrates diethyl dithiocarbamate (DEDTC), p-nitrophenol (PNP) and dimethyl sulphoxide (DMSO) strongly inhibited the metabolism of NMF in suspensions of rat liver microsomes, at concentrations which did not effect aminopyrine N-demethylation. The rate of metabolism of NMF to SMG in human microsomes correlated (r> 0.8) with the rate of metabolism of chlorzoxazone, a CYP2E1 probe. A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited NMF metabolism in microsomes from rats and humans by 75% and 80% , respectively. The amount of immunoblottable enzyme in human microsomes, determined using an anti-rat CYP2E1 antibody, correlated with the rate of NMF metabolism (r> 0.8). Purified rat CYP2E1 catalysed the generation of SMG from NMF. Formation of the DMF metabolite N-hydroxymethyl-N-methylformamide (HMMF) in incubations with rat liver microsomes was elevated by 200% following pretreatment of animals with acetone. Co-incubation with DEDTC (100μM) inhibited HMMF generation from DMF by 88% . Co-incubation of DMF (10mM) with NMF (1mM) inhibited the formation of SMG by 95% . A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited generation of HMMF in incubates with rat and human liver microsomes by 68.4% and 67.5% , respectively. Purified rat CYP2E1 catalysed the generation of HMMF from DMF. Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KHKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.
Resumo:
The industrial solvent N, N-dimethylformamide (DMF) causes liver damage in humans. The hepatotoxicity of N-alkylformamides seems to be linked to their metabolism to N-alkylcarbamic acid thioesters. To clarify the role of metabolism in DMF hepatotoxicity, the metabolic fate of DMF was investigated in rodents. DMF was rapidly metabolised and excreted in the urine as N-hydroxymethyl-N-methyl-formamide (HMMF), N-acetyl-S-(N-methylcarbamoyl) cysteine (AMCC) and a metabolite measured as formamide by GLC. At high doses (0.7 and 7.0mmo1/kg) a small proportion of the dose was excreted unchanged. AMCC, measured by GLC after derivatisation to ethyl N-methylcarbamate, was a minor metabolite. Only 5.2% of the dose (0.1mmo1/kg) in rats or 1.2% in mice was excreted as AMCC. The minor extent of this metabolic pathway in rodents might account for the marginal liver damage induced by DMF in these species. In a collaborative study, volunteers were shown to metabolise DMF to AMCC to a greater extent than rodents. Nearly 15% of the inhaled dose (0.049mmo1/kg) was excreted as AMCC. This result suggests that the metabolic pathway leading to AMCC is more important in humans than in rodents. Consequently the risk associated with exposure to DMF might be higher in humans than in rodents. The metabolism of formamides to S-(N-alkylcarbamoyl) glutathione, the metabolic precursor of the thioester mercapturates, was studied using mouse, rat and human hepatic microsomes. The metabolism of NMF (10mM) to S-(N-methylcarbanoyl)glutathione (SMG) required the presence of GSH, NADPH and air. Generation of S-(N-methyl-carbamoyl)glutathione (SMG) was inhibited when incubations were conducted in an atmosphere of CO:air (1:1) or when SKF 525-A (3.0mM) was included in the incubations. Pre-treatment of mice with phenobarbitone (PB, 80mg/kg for 4 days) or beta-naphthoflavone (BNF, 50mg/kg for 4 days) failed to increase the microsomal formation of SMG from NMF. This result suggests that the oxidation of NMF is catalysed by a cytochrome P-450 isozyme which is unaffected by PB or BNF. Microsomal incubations with DMF (5 or 10mM) failed to generate measurable amounts of SMG although DMF was metabolised to HMMF. Incubations of microsomes with HMMF resulted in the generation of a small amount of SMG which was affected by inhibitors of microsomal enzymes in the same way as in the case of NMF. HMMF was metabolised to AMCC by rodents in vivo. This result suggests that HMMF is a major intermediate in the metabolic activation of DMF.
Resumo:
Changes in the concentration of some constituents in women's saliva during the menstrual cycle were studied. Saliva was used because it is easier to collect than other body fluids and is continuously available for analysis. Glucose, the enzyme 17-Acetyl-D-glucosaminidase (NAG) and Calcium which are saliva constituents and belong to three different chemical groups were selected for the study. Several analytical techniques were investigated. The fluorometric assay procedure was found to be the best because of its specificity and sensitivity for the estimation of these constituents. resides the fluorametric method a spectrophotometric method was used in the NAG determination and an atomic absorption method in the calcium estimation. Glucose was estimated by an enzymatic method. This is based on the reaction of glucose with the enzymes glucose oxidase and peroxidase to yield hydrogen peroxide, which in turn oxidises a non-fluorescent substrate, p-hydroxyphenylacetic acid, to a highly fluorescent product. The saliva samples in this determination had to be centrifuged at high speed, heated in a boiling water bath, centrifuged again and then treated with a mixture of cation and anion resins to remove the substances that inhibited the enzyme system. In the determination of the NAG activity the saliva samples were diluted with citric acid/phosphate buffer, and then centrifuged at high speed. The assay was based on the enzymic hydrolysis of the non-fluorescent substrate 4-Methyl-umbelli1eryl-p-D-glucosaminide to the highly fluorescent 4-Methyl-umbelliferone• Calcium was estimated by a fluorometric procedure based upon the measurement of the fluorescence produced by the complex formed between calcein blue and calcium, at pH 9 - 13. From the results obtained from the analysis of saliva samples of several women it was found that glucose showed a significant increase in its level around the expected time of ovulation. This was found in seven cycles out of ten. Similar results were found with the enzyme NAG. No significant change in the calcium levels was observe& at any particular time of the cycle. The levels of the glucose, the activity of the enzyme NAG and the concentration of the calcium were found to change daily, and to differ from one subject to another and in the same subject from cycle to cycle. The increase observed it salivary glucose levels and the enzyme NAG activity could be monitored to predict the time of ovulation.
Resumo:
The modularised assembly FMS (Flexible Manufacturing System) cascade is a form of system design which, the authors feel, could be viable in a variety of organisational and operational settings where high product mix manufacture and unitary batch sizing are common features. The philosophy behind the concept is that production facilities are market-driven and customers' orders place a direct demand pull on final assembly which, in turn, triggers all preceeding activities. Greater flexibility~is recognized as a necessary feature in modern manufacture and the implementation of modularised FMS in conjunction with state-of-the-art hardware and computer software systems enable conditions under which more flexible processing can take place.
Resumo:
A neuronal cell line (NG115-401L-C3) was stimulated by mitogenic (angiotensin) and non-mitogenic (bradykinin) peptides and examined for the time course of changes in the levels of radiolabelled inositol phosphates and phospholipids. Both peptides stimulated the time-dependent production of Ins(1,4,5)P3 and related metabolites. Bradykinin caused a much larger increase in Ins(1,4,5)P3 than did angiotensin. However, both peptides stimulated similar rises in the levels of Ins(1,3,4)P3 and InsP4. Bradykinin but not angiotensin, caused a rapid (within 2 s) fall in the levels of PtdIns(4,5)P2 and PtdIns(4)P. Serum pretreatment of the cells caused a 2-3-fold potentiation of both the responses to bradykinin and angiotensin. Although significant levels of PtdIns(3)P were detected in resting cells neither mitogenic (angiotensin, insulin-like growth factor I, transforming growth factor beta) nor non-mitogenic (bradykinin, nerve growth factor interleukin-1) receptor activation changed its levels, arguing against regulation of either PtdIns 3-kinase or PtdIns(3)P phosphatase. We conclude that, as judged by the levels of its product. PtdIns(3)P, the enzyme PtdIns 3-kinase is not activated. This questions the significance of this activity in the receptor-mediated initiation of DNA synthesis.
Resumo:
Immunoglobulin G from rheumatoid patients is denatured around the hinge region. This has been proposed as an explanation for the presence of circulating autoantibodies to IgG in these patients. It has previously been suggested that oxygen radicals (OR) derived from activated polymorphs may play a role in denaturation in vivo. Using sera from rheumatoid patients and age-matched controls in a modified ELISA technique, we have investigated the potential for polyclonal rheumatoid factors (RF) to bind to OR denatured IgG. Three model systems were used to generate OR in vitro: (a) purified PMN s activated by the cell surface stimulant PMA, (b) radiolysis of IgG in solution to generate specifically the superoxide radical and, in a separate system, the hydroxyl radical, (OH.), (c) purified myeloperoxide in the presence of H2O2 and halide ions. Results: 1. The binding of both IgA and IgM RF s to PMN denatured IgG increased dose dependently for seropositive sera only. 2. The OH. radical but not the superoxide radical significantly increased the binding of IgA and M RF, again only for seropositive sera. 3. The myeloperoxidase enzyme system did not increase RF binding. 4. IgG incubated with elastase was not found to be a better antigen than native IgG. These results indicate that IgG is denatured by OR released from activated PMN, thereby producing an antigen for polyclonal RF s.
Resumo:
Clinical dextran is used as a blood volume expander. The British Pharmacopeia (BP) specification for this product requires the amount of dextran below 12,000 MW and above 98,000 MW to be strictly controlled. Dextran is presently fractionated industrially using ethanol precipitation. The aim of this work was to develop an ultrafiltration system which could replace the present industrial process. Initially these molecular weight (MW) bands were removed using batch ultrafiltration. A large number of membranes were tested. The correct BP specification could be achieved using these membranes but there was a significant loss of saleable material. To overcome this problem a four stage ultrafiltration cascade (UFC) was used. This work is the first known example of a UFC being used to remove both the high and low MW dextran. To remove the high MW material it was necessary to remove 90% of the MW distribution and retain the remaining 10%. The UFC significantly reduced the amount of dialysate required. To achieve the correct specification below 12,000 MW, the UFC required only 2.5 - 3.0 diavolumes while the batch system required 6 - 7. The UFC also improved the efficiency of the fractionation process. The UFC could retain up to 96% of the high MW material while the batch system could only retain 82.5% using the same number of diavolumes. On average the UFC efficiency was approximately 10% better than the equivalent batch system. The UFC was found to be more predictable than the industrial process and the specification of the final product was easier to control. The UFC can be used to improve the fractionation of any polymer and also has several other potential uses including enzyme purification. A dextransucrase bioreactor was also developed. This preliminary investigation highlighted the problems involved with the development of a successful bioreactor for this enzyme system.
Resumo:
This system is concerned with the design and implementation of a community health information system which fulfils some of the local needs of fourteen nursing and para-medical professions in a district health authority, whilst satisfying the statutory requirements of the NHS Korner steering group for those professions. A national survey of community health computer applications, documented in the form of an applications register, shows the need for such a system. A series of general requirements for an informations systems design methodology are identified, together with specific requirements for this problem situation. A number of existing methodologies are reviewed, but none of these were appropriate for this application. Some existing approaches, tools and techniques are used to define a more suitable methodology. It is unreasonable to rely on one single general methodology for all types of application development. There is a need for pragmatism, adaptation and flexibility. In this research, participation in the development stages by those who will eventually use the system was thought desirable. This was achieved by forming a representative design group. Results would seem to show a highly favourable response from users to this participation which contributed to the overall success of the system implemented. A prototype was developed for the chiropody and school nursing staff groups of Darlington health authority, and evaluations show that a significant number of the problems and objectives of those groups have been successfully addressed; the value of community health information has been increased; and information has been successfully fed back to staff and better utilised.
Resumo:
The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.
Resumo:
A model of human leucopenia has been developed further in the female mouse. Following daily administration to female mice of 50 mg/kg of the aromatase inhibitor aminoglutethimide, significant falls in platelet and white cell counts occurred after 2 and 3 weeks. At week 4, drug dosage was stopped and the cell counts recovered at the end of that week, although on rechallenge at the beginning of week 5, both platelet and white cell counts fell rapidly. Administration to the mice of structural analogues of aminoglutethimide, such as WSP-3, glutethimide and 4-nitroglutethimide, showed no reductions in platelet and white cell counts. The haemotoxicity of aminoglutethimide over 21 days was unaffected by the presence of either the P-450 inhibitor SKF-525A or the hepatic P-450 inducer phenobarbitone. However, the co-administration of cimetidine abolished the haemotoxicity of aminoglutethimide in terms of platelet and white cell levels. In in vitro studies, both aminoglutethimide and WSP-3 were oxidised to cytotoxic species, although aminoglutethimide was significantly more cytotoxic than WSP-3. The NADPH-dependent covalent binding of 14C aminoglutethimide to mouse microsomes in vitro was significantly reduced by the presence of cimetidine. The activation of the compound to reactive species in vitro, the inhibitory effects of cimetidine in vivo and in vitro, as well as the rapid fall in the in vivo white cell count on rechallenge with aminoglutethimide suggest that this model illustrates a form of leucopenia which may be related to hapten formation and subsequent immune-mediated platelet and white cell lysis. © 2003 Elsevier B.V. All rights reserved.