6 resultados para Cyber-physical Ssystem
em Aston University Research Archive
Resumo:
Classification is the most basic method for organizing resources in the physical space, cyber space, socio space and mental space. To create a unified model that can effectively manage resources in different spaces is a challenge. The Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports generalization and specialization on multi-dimensional classifications. This paper introduces the basic concepts of RSM, and proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments. This model also enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with normal form and integrity guarantees. Some extensions and applications of the P-RSM are introduced.
Resumo:
Humans consciously and subconsciously establish various links, emerge semantic images and reason in mind, learn linking effect and rules, select linked individuals to interact, and form closed loops through links while co-experiencing in multiple spaces in lifetime. Machines are limited in these abilities although various graph-based models have been used to link resources in the cyber space. The following are fundamental limitations of machine intelligence: (1) machines know few links and rules in the physical space, physiological space, psychological space, socio space and mental space, so it is not realistic to expect machines to discover laws and solve problems in these spaces; and, (2) machines can only process pre-designed algorithms and data structures in the cyber space. They are limited in ability to go beyond the cyber space, to learn linking rules, to know the effect of linking, and to explain computing results according to physical, physiological, psychological and socio laws. Linking various spaces will create a complex space — the Cyber-Physical-Physiological-Psychological-Socio-Mental Environment CP3SME. Diverse spaces will emerge, evolve, compete and cooperate with each other to extend machine intelligence and human intelligence. From multi-disciplinary perspective, this paper reviews previous ideas on various links, introduces the concept of cyber-physical society, proposes the ideal of the CP3SME including its definition, characteristics, and multi-disciplinary revolution, and explores the methodology of linking through spaces for cyber-physical-socio intelligence. The methodology includes new models, principles, mechanisms, scientific issues, and philosophical explanation. The CP3SME aims at an ideal environment for humans to live and work. Exploration will go beyond previous ideals on intelligence and computing.
Resumo:
Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.
Resumo:
Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut- practical next-generation tools can deliver to developers of Cyber- Physical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the “agile research method” taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.
Resumo:
Even simple hybrid systems like the classic bouncing ball can exhibit Zeno behaviors. The existence of this type of behavior has so far forced simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad hoc restrictions to circumvent Zeno behavior or to abandon hybrid modeling. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independently of the occurrence of a given event. Such an event can then even occur an unbounded number of times, thus making it possible to handle certain types of Zeno behavior.
Resumo:
Resource Space Model is a kind of data model which can effectively and flexibly manage the digital resources in cyber-physical system from multidimensional and hierarchical perspectives. This paper focuses on constructing resource space automatically. We propose a framework that organizes a set of digital resources according to different semantic dimensions combining human background knowledge in WordNet and Wikipedia. The construction process includes four steps: extracting candidate keywords, building semantic graphs, detecting semantic communities and generating resource space. An unsupervised statistical language topic model (i.e., Latent Dirichlet Allocation) is applied to extract candidate keywords of the facets. To better interpret meanings of the facets found by LDA, we map the keywords to Wikipedia concepts, calculate word relatedness using WordNet's noun synsets and construct corresponding semantic graphs. Moreover, semantic communities are identified by GN algorithm. After extracting candidate axes based on Wikipedia concept hierarchy, the final axes of resource space are sorted and picked out through three different ranking strategies. The experimental results demonstrate that the proposed framework can organize resources automatically and effectively.©2013 Published by Elsevier Ltd. All rights reserved.