1 resultado para Curve numbers
em Aston University Research Archive
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (31)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (57)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (41)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Montana Tech (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (65)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- Publishing Network for Geoscientific & Environmental Data (155)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (56)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (55)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade Federal do Pará (4)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Michigan (147)
- University of Queensland eSpace - Australia (19)
- University of Southampton, United Kingdom (6)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.