3 resultados para Crystallization process
em Aston University Research Archive
Resumo:
Advances in statistical physics relating to our understanding of large-scale complex systems have recently been successfully applied in the context of communication networks. Statistical mechanics methods can be used to decompose global system behavior into simple local interactions. Thus, large-scale problems can be solved or approximated in a distributed manner with iterative lightweight local messaging. This survey discusses how statistical physics methodology can provide efficient solutions to hard network problems that are intractable by classical methods. We highlight three typical examples in the realm of networking and communications. In each case we show how a fundamental idea of statistical physics helps solve the problem in an efficient manner. In particular, we discuss how to perform multicast scheduling with message passing methods, how to improve coding using the crystallization process, and how to compute optimal routing by representing routes as interacting polymers.
Resumo:
Protein crystallization has gained a new strategic and commercial relevance in the postgenomic era due to its pivotal role in structural genomics. Producing high quality crystals has always been a bottleneck to efficient structure determination, and this problem is becoming increasingly acute. This is especially true for challenging, therapeutically important proteins that typically do not form suitable crystals. The OptiCryst consortium has focused on relieving this bottleneck by making a concerted effort to improve the crystallization techniques usually employed, designing new crystallization tools, and applying such developments to the optimization of target protein crystals. In particular, the focus has been on the novel application of dual polarization interferometry (DPI) to detect suitable nucleation; the application of in situ dynamic light scattering (DLS) to monitor and analyze the process of crystallization; the use of UV-fluorescence to differentiate protein crystals from salt; the design of novel nucleants and seeding technologies; and the development of kits for capillary counterdiffusion and crystal growth in gels. The consortium collectively handled 60 new target proteins that had not been crystallized previously. From these, we generated 39 crystals with improved diffraction properties. Fourteen of these 39 were only obtainable using OptiCryst methods. For the remaining 25, OptiCryst methods were used in combination with standard crystallization techniques. Eighteen structures have already been solved (30% success rate), with several more in the pipeline.
Resumo:
Results of a pioneering study are presented in which for the first time, crystallization, phase separation and Marangoni instabilities occurring during the spin-coating of polymer blends are directly visualized, in real-space and real-time. The results provide exciting new insights into the process of self-assembly, taking place during spin-coating, paving the way for the rational design of processing conditions, to allow desired morphologies to be obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.