12 resultados para Crystal growth from melt
em Aston University Research Archive
Resumo:
Using data on Polish firms this paper examines the relationship between corporate control structures, sales growth and the determinants of employment change. Privatised and de novo firms are the main drivers of employment growth; in the case of de novo firms, it is foreign ownership which underpins the result. Being privatised has a positive impact on employment but this is concentrated within a range of 3–6 years after privatisation. There are no systematic differences in employment response to negative sales growth across the ownership categories. Employment in state firms is less responsive to positive sales growth. From these results we infer that the behaviour of state firms is affected by both insider rent sharing and binding budget constraints.
Resumo:
Using panel data on large Polish firms this paper examines the relationship between corporate control structures, sales growth and the determinants of employment change during the period 1996-2002. We find that privatised and de novo firms are the main drivers of employment growth and that, in the case of de novo firms, it is foreign ownership which underpins the result. Interestingly, we find that being privatised has a positive impact on employment growth but that this impact is concentrated within a range of three to six years after privatisation. In contrast with the findings of earlier literature, we find evidence that there are no systematic differences in employment response to negative sales growth across the ownership categories. On the other hand, employment in state firms is less responsive to positive sales growth. From these combined results we infer that the behaviour of state firms is constrained by both insider rent sharing and binding budget constraints. Consistent with this, we find that privatised companies, three to six years post-privatisation, are the firms for whom employment is most responsive to positive sales growth and as such, offer the best hope for rapid labour market expansion.
Resumo:
Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to determine how thallus symmetry could be maintained in foliose lichens when variation in the growth of individual lobes may be high. Hence, the radial growth of a sample of lobes was studied monthly, over 22 months, in 7 thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. And 5 thalli of P. glabratula ssp fuliginosa (fr. ex Duby) Laund. The degree of variation in the total radial growth of different lobes within a thallus over 22 months varied between thalli. Individual lobes showed a fluctuating pattern of radial growth from month to month with alternating periods of fast and slow growth. Monthly variations in radial growth of different lobes were synchronized in some but not in all thalli. Few significant correlations were found between the radial growth of individual lobes and total monthly rainfall or shortwave radiation. The levels of ribitol, arabitol and mannitol were measured in individual lobes. All three polyols varied significantly between lobes within a thallus suggesting that variations in algal phostosynthesis and in the partitioning of fungal polyols may contribute to lobe growth variation. The effect on thallus symmetry of lobes which grew radially either consistently faster or slower than average was studied. Slow growing lobes were overgrown, and gaps in the perimeter were eliminated by the growth of neighbouring lobes, in approximately 7 to 9 months. However, a rapidly growing lobe, with its neighbours removed on either side, continued to grow radially at the same rate as rapidly growing control lobes. The results suggested that lobe growth variation results from a combination of factors which may include the origin of the lobes, lobe morphology and the patterns of algal cell division and hyphal elongation in different lobes. No convincing evidence was found to suggest that exchange of carbohydrate occurred between lobes which would tend to equalize their radial growth. Hence, the fluctuating pattern of lobe growth observed may be sufficient to maintain a degree of symmetry in most thalli. In addition, slow growing lobes would tend to be overgrown by faster growing neighbours thus preventing the formation of indentations in the thallus perimeter.
Resumo:
In England, publicly supported advice to small firms is organized primarily through the Business Link (BL) network. Using the programme theory underlying this business support, we develop four propositions and test these empirically using data from a new survey of over 3000 English SMEs. We find strong support for the value to BL operators of a high profile to boost take-up. We find support for the BL’s market segmentation that targets intensive assistance to younger firms and those with limited liability. Allowing for sample selection, we find no significant effects on growth from ‘other’ assistance but find a significant employment boost from intensive assistance. This partially supports the programme theory assertion that BL improves business growth and strongly supports the proposition that there are differential outcomes from intensive and other assistance. This suggests an improvement in the BL network, compared with earlier studies, notably Roper et al. (2001), Roper and Hart (2005).
Resumo:
Protein crystallization has gained a new strategic and commercial relevance in the postgenomic era due to its pivotal role in structural genomics. Producing high quality crystals has always been a bottleneck to efficient structure determination, and this problem is becoming increasingly acute. This is especially true for challenging, therapeutically important proteins that typically do not form suitable crystals. The OptiCryst consortium has focused on relieving this bottleneck by making a concerted effort to improve the crystallization techniques usually employed, designing new crystallization tools, and applying such developments to the optimization of target protein crystals. In particular, the focus has been on the novel application of dual polarization interferometry (DPI) to detect suitable nucleation; the application of in situ dynamic light scattering (DLS) to monitor and analyze the process of crystallization; the use of UV-fluorescence to differentiate protein crystals from salt; the design of novel nucleants and seeding technologies; and the development of kits for capillary counterdiffusion and crystal growth in gels. The consortium collectively handled 60 new target proteins that had not been crystallized previously. From these, we generated 39 crystals with improved diffraction properties. Fourteen of these 39 were only obtainable using OptiCryst methods. For the remaining 25, OptiCryst methods were used in combination with standard crystallization techniques. Eighteen structures have already been solved (30% success rate), with several more in the pipeline.
Resumo:
The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.
Resumo:
Non-doped and La-doped ZnTiO3 nanoparticles were successfully synthesized via a modified sol–gel method. The synthesized nanoparticles were structurally characterized by PXRD, UV-vis DRS, FT-IR, SEM-EDS, TEM, Raman and photoluminescence spectroscopy. The results show that doping of La into the framework of ZnTiO3 has a strong influence on the physico-chemical properties of the synthesized nanoparticles. XRD results clearly show that the non-doped ZnTiO3 exhibits a hexagonal phase at 800 °C, whereas the La-doped ZnTiO3 exhibits a cubic phase under similar experimental conditions. In spite of the fact that it has a large ionic radius, the La is efficiently involved in the evolution process by blocking the crystal growth and the cubic to hexagonal transformation in ZnTiO3. Interestingly the absorption edge of the La-doped ZnTiO3 nanoparticles shifted from the UV region to the visible region. The photocatalytic activity of the La-doped ZnTiO3 nanoparticles was evaluated for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity was obtained for 2 atom% La-doped ZnTiO3, which is much higher than that of the non-doped ZnTiO3 as well as commercial N-TiO2. A possible mechanism for the degradation of Rhodamine B over La-doped ZnTiO3 was also discussed by trapping experiments. More importantly, the reusability of these nanoparticles is high. Hence La-doped ZnTiO3 nanoparticles can be used as efficient photocatalysts for environmental applications.
Resumo:
We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.
Resumo:
In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.
Resumo:
In this work, we investigate the influence of some growth parameters such as high microwave power ranging from 3.0 to 4.0 kW and N2 additive on the incorporation of bonded hydrogen defects in nanocrystalline diamond (NCD) films grown through a small amount of pure N2 addition into conventional 4% CH4/H2 plasma using a 5 kW microwave plasma CVD system. Incorporation form and content of hydrogen point defects in the NCD films produced with pure N2 addition was analyzed by employing Fourier-transform infrared (FTIR) spectroscopy for the first time. A large amount of hydrogen related defects was detected in all the produced NCD films with N2 additive ranging from 29 to 87 µm thick with grain size from 47 nm to 31 nm. Furthermore, a specific new H related sharp absorption peak appears in all the NCD films grown with pure N2/CH4/H2 plasma at high powers and becomes stronger at powers higher than 3.0 kW and is even stronger than the 2920 cm−1 peak, which is commonly found in CVD diamond films. Based on these experimental findings, the role of high power and pure nitrogen addition on the growth of NCD films including hydrogen defect formation is analyzed and discussed.