6 resultados para Crossed symmetry
em Aston University Research Archive
Resumo:
This study determined whether the radial growth of lobes of the foliose lichen Parmelia conspersa (Ehrh. ex Ach.)Ach. was influenced by the radial growth and morphology of their closest neighbours and whether such interactions influence thallus symmetry. The radial growth and morphology of a sample of adjacent lobes from six thalli was measured. Positive correlations were observed between radial growth and lobe width in three thalli and with the degree of bifurcation of the lobe in two thalli. Negative correlations between the radial growth of adjacent lobes were observed in four thalli suggesting that faster growing lobes may inhibit the growth of their neighbours.Lobes glued next to individual lobes had no signifiacnt effect on the radial growth of wide or narrow lobes. Lobes glued 1-2 mm in front of their neighbours exhibited an intital phase of increased radial growth and then a phase of slower growth. Radial growth decreased when the lobes were glued 2 mm behind their neighbours and these lobes were essentially eliminated by the growth of the adjacent lobes. The data suggest that lobe interactions may incresae lobe growth variation within a thallus. However, the decrease in radial growth of lobes which protrude from the margin and the elimination of slower growing lobes may help to maintain thallus symmetry.
Resumo:
The aim of this study was to determine how thallus symmetry could be maintained in foliose lichens when variation in the growth of individual lobes may be high. Hence, the radial growth of a sample of lobes was studied monthly, over 22 months, in 7 thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. And 5 thalli of P. glabratula ssp fuliginosa (fr. ex Duby) Laund. The degree of variation in the total radial growth of different lobes within a thallus over 22 months varied between thalli. Individual lobes showed a fluctuating pattern of radial growth from month to month with alternating periods of fast and slow growth. Monthly variations in radial growth of different lobes were synchronized in some but not in all thalli. Few significant correlations were found between the radial growth of individual lobes and total monthly rainfall or shortwave radiation. The levels of ribitol, arabitol and mannitol were measured in individual lobes. All three polyols varied significantly between lobes within a thallus suggesting that variations in algal phostosynthesis and in the partitioning of fungal polyols may contribute to lobe growth variation. The effect on thallus symmetry of lobes which grew radially either consistently faster or slower than average was studied. Slow growing lobes were overgrown, and gaps in the perimeter were eliminated by the growth of neighbouring lobes, in approximately 7 to 9 months. However, a rapidly growing lobe, with its neighbours removed on either side, continued to grow radially at the same rate as rapidly growing control lobes. The results suggested that lobe growth variation results from a combination of factors which may include the origin of the lobes, lobe morphology and the patterns of algal cell division and hyphal elongation in different lobes. No convincing evidence was found to suggest that exchange of carbohydrate occurred between lobes which would tend to equalize their radial growth. Hence, the fluctuating pattern of lobe growth observed may be sufficient to maintain a degree of symmetry in most thalli. In addition, slow growing lobes would tend to be overgrown by faster growing neighbours thus preventing the formation of indentations in the thallus perimeter.
Resumo:
A numerical continuation method is carried out in a homotopy space connecting two different flows, the Plane Couette Flow (PCF) and the Laterally Heated Flow in a vertical slot (LHF). This numerical continuation method enables us to obtain an exact steady solution in PCF. The new solution has the shape of hairpin vortices (HVS: hairpin vortex solution), which is observed ubiquitously in turbulent shear flows.
Resumo:
Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.
Resumo:
This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalized, including to continuous cases and general networks. By applying this measure to a series of objects, it is shown that it can be consistently used for both small scale structures with exact symmetry breaking and large scale patterns, for which, differently from similar measures, it consistently discriminates between repetitive patterns, random configurations and self-similar structures