3 resultados para Critical Sensitivity

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element analysis is a useful tool in understanding how the accommodation system of the eye works. Further to simpler FEA models that have been used hitherto, this paper describes a sensitivity study which aims to understand which parameters of the crystalline lens are key to developing an accurate model of the accommodation system. A number of lens models were created, allowing the mechanical properties, internal structure and outer geometry to be varied. These models were then spun about their axes, and the deformations determined. The results showed the mechanical properties are the critical parameters, with the internal structure secondary. Further research is needed to fully understand how the internal structure and properties interact to affect lens deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrast susceptibility is defined as the difference in visual acuity recorded for high and low contrast optotypes. Other researchers refer to this parameter as "normalised low contrast acuity". Pilot surveys have revealed that contrast susceptibility deficits are more strongly related to driving accident involvement than are deficits in high contrast visual acuity. It has been hypothesised that driving situation avoidance is purely based upon high contrast visual acuity. Hence, the relationship between high contrast visual acuity and accidents is masked by situation avoidance whilst drivers with contrast susceptibility deficits remain prone to accidents in poor visibility conditions. A national survey carried out to test this hypothesis provided no support for either the link between contrast susceptibility deficits and accidents involvement or the proposed hypothesis. Further, systematically worse contrast susceptibility scores emerged from vision screeners compared to wall mounted test charts. This discrepancy was not due to variations in test luminance or instrument myopia. Instead, optical imperfections inherent in vision screeners were considered to be responsible. Although contrast susceptibility is unlikely to provide a useful means of screening drivers' vision, previous research does provide support for its ability to detect visual deficits that may influence everyday tasks. In this respect, individual contrast susceptibility variations were found to reflect variations in the contrast sensitivity function - a parameter that provides a global estimate of human contrast sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studied the effect of (i) the number of grating components and (ii) parameter randomisation on root-mean-square (r.m.s.) contrast sensitivity and spatial integration. The effectiveness of spatial integration without external spatial noise depended on the number of equally spaced orientation components in the sum of gratings. The critical area marking the saturation of spatial integration was found to decrease when the number of components increased from 1 to 5-6 but increased again at 8-16 components. The critical area behaved similarly as a function of the number of grating components when stimuli consisted of 3, 6 or 16 components with different orientations and/or phases embedded in spatial noise. Spatial integration seemed to depend on the global Fourier structure of the stimulus. Spatial integration was similar for sums of two vertical cosine or sine gratings with various Michelson contrasts in noise. The critical area for a grating sum was found to be a sum of logarithmic critical areas for the component gratings weighted by their relative Michelson contrasts. The human visual system was modelled as a simple image processor where the visual stimuli is first low-pass filtered by the optical modulation transfer function of the human eye and secondly high-pass filtered, up to the spatial cut-off frequency determined by the lowest neural sampling density, by the neural modulation transfer function of the visual pathways. The internal noise is then added before signal interpretation occurs in the brain. The detection is mediated by a local spatially windowed matched filter. The model was extended to include complex stimuli and its applicability to the data was found to be successful. The shape of spatial integration function was similar for non-randomised and randomised simple and complex gratings. However, orientation and/or phase randomised reduced r.m.s contrast sensitivity by a factor of 2. The effect of parameter randomisation on spatial integration was modelled under the assumption that human observers change the observer strategy from cross-correlation (i.e., a matched filter) to auto-correlation detection when uncertainty is introduced to the task. The model described the data accurately.