3 resultados para Cream-separators

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to design and build an equipment which can detect ferrous and non-ferrous objects in conveyed commodities, discriminate between them and locate the object along the belt and on the width of the belt. The magnetic induction mechanism was used as a means of achieving the objectives of this research. In order to choose the appropriate geometry and size of the induction field source, the field distributions of different source geometries and sizes were studied in detail. From these investigations it was found the square loop geometry is the most appropriate as a field generating source for the purpose of this project. The phenomena of field distribution in the conductors was also investigated. An equipment was designed and built at the preliminary stages of thework based on a flux-gate magnetometer with the ability to detect only ferrous objects.The instrument was designed such that it could be used to detect ferrous objects in the coal conveyors of power stations. The advantages of employing this detector in the power industry over the present ferrous metal electromagnetic separators were also considered. The objectives of this project culminated in the design and construction of a ferrous and non-ferrous detector with the ability to discriminate between ferrous and non-ferrous metals and to locate the objects on the conveying system. An experimental study was carried out to test the performance of the equipment in the detection of ferrous and non-ferrous objects of a given size carried on the conveyor belt. The ability of the equipment to discriminate between the types of metals and to locate the object on the belt was also evaluated experimentally. The benefits which can be gained from the industrial implementations of the equipment were considered. Further topics which may be investigated as an extension of this work are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A literature review of work carried out on batch and continuous chromatographic biochemical reactor-separators has been made. The major part of this work has involved the development of a batch chromatographic reactor-separator for the production of dextran and fructose by the enzymatic action of the enzyme dextransucrase on sucrose. In this reactor, simultaneous reaction and separation occurs thus reducing downstream processing and isolation of products as compared to the existing industrial process. The chromatographic reactor consisted of a glass column packed with a stationary phase consisting of cross linked polysytrene resin in the calcium form. The mobile phase consisted of diluted dextransucrase in deionised water. Initial experiments were carried out on a reactor separtor which had an internal diameter of 0.97cm and length of 1.5m. To study the effect of scale up the reactor diameter was doubled to 1.94cm and length increased to 1.75m. The results have shown that the chromatographic reactor uses more enzyme than a conventional batch reactor for a given conversion of sucrose and that an increase in void volume results in higher conversions of sucrose. A comparison of the molecular weight distribution of dextran produced by the chromatographic reactor was made with that from a conventional batch reactor. The results have shown that the chromatographic reactor produces 30% more dextran of molecular weight greater than 150,000 daltons at 20% w/v sucrose concentration than conventional reactors. This is because some of the fructose molecules are prevented as acting as acceptors in the chromatographic reactor due to their removal from the reaction zone. In the conventional reactor this is not possible and therefore a greater proportion of low molecular weight dextran is produced which does not have much clinical use. A theoretical model was developed to describe the behaviour of the reactor separator and this model was simulated using a computer. The simulation predictions showed good agreement with experimental results at high eluent flowrates and low conversions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The separation performance of a semicontinuous counter-current chromatographic refiner (SCCR7), consisting of twelve 5.4 cm id x 75cm long columns packed with calcium charged cross-linked polysytrene resin (KORELA VO7C), was optimised. An industrial barley syrup was used containing 42% fructose, 52% glucose and 6% maltose and oligosaccharides. The effects of temperature, flow rates and concentration on the distribution coefficients were evaluated and quantified by deriving general relationships. The effects of flow rates, feed composition and concentration on the separation performance of the SCCR7 were identified and general relationships between them and the switch time, which was found to be the controlling parameter, were developed. Fructose rich (FRP) and glucose rich (GRP) product purities of 99.9% were obtained at 18.6% w/v feed concentrations. When a 66% w/v feed concentration was used and product splitting technique was employed, the throughput was 32.1 kg sugar solids/m3 resin/hr. The GRP contained less than 4.5% fructose, the FRP was over 95% pure, and the respective concentrations were 22.56 and 11.29% w/v. Over 94% of the glucose and 95.78% of the fructose in the feed were recovered in the GRP and FRP respectively. By recycling the dilute product split fractions, the GRP and FRP concentrations were increased to 25.4 and 12.96% w/v; the FRP was 90.2% pure and the GRP contained 6.69% w/v fructose. A theoretical link between batch and semicontinuous chromatographic equipments has been determined. A computer simulation was developed predicting successfully the purging concentration profiles at `pseudo-equilibrium', and also certain system design parameters. An important further aspect of the work has been to study the behaviour of chromatographic bioreactor-separators. Such batch systems of 5.4cm id and lengths varying between 30 and 230cm, were used to investigate the effect of scaling up on the conversion of sucrose into dextran and fructose in the presence of the dextransucrase enzyme. Conversions of over 80% were achieved at 4 hr sucrose residence times. The crude dextransucrase was purified using centrifugation, ultrafiltration and cross-flow microfiltration techniques. Better enzyme stability was obtained by first separating the non-solid impurities using cross-flow microfiltration, and then removing the cells from the enzyme immediately before use by continuous centrifugation.