7 resultados para Cortisol metabolites
em Aston University Research Archive
Resumo:
Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, the major route of tryptophan. (TRP) metabolIsm. In the liver, cortisol-inducible tIyptophan-2,3-dioxygenase (TDO) is the first enzyme and rate limiting step. In extrahepatic tissues, it is superceded by indoleamine-2,3-dioxygenase (IDO), an enzyme with a wider substrate specificity. Earlier work in this research group has found substantial elevations in plasma KYN in fasting Tourette's Syndrome (TS) patients with normal TRP and neopterin. The aim of our initial pilot study was to confirm this increase in KYN in fasting human TS patients compared with normal controls, and to see how changes in diet :ay influence certain kynurenine pathway variables. However, we failed to detect a change in plasma KYN, TRP, kynurenic acid (KYNA), neopterin or cortisol between the fasting TS and control groups. Moreover, none of the variables was affected by dietary status, and thus candidates selected for the larger cross-sectional study were permitted to eat and drink freely on the day that blood samples were submitted, but were requested to avoid products containing caffeine, aspirin or nicotine. In the cross-sectional study, TS patients exhibited significantly higher plasma KYN concentrations than controls, although the magnitude of the change was much smaller than originally found. This may be due to differences in detection procedure and the seasonal fluctuation of some biochemical variables, notably cortisol. The generalised increase in neopterin in the TS subject group, suggests a difference in the activity of cytokine-inducible IDO as a likely source for this elevated KYN. Other kynurenine pathway metabolites, specifIcally TRP, 3-hydroxykynurenine (HKY), 3-hydroxyanthranilic acid (HAA) and KYNA were unchanged. In view of recent speculation of the potential therapeutic effects of nicotine in TS, the lower KYN concentrations observed in TS smokers, compared with non-smoking TS patients, was another interesting finding. Tic-like movements, such as head-shakes (HS), which occur in rodents both spontaneously and following diverse drug treatments, closely resemble tic behaviours in humans. The animal tic model was used to examine what effects nicotine may have on shaking behaviours and on selected TRP metabolites. Acute systemic administration of nicotine to mice, produced a dose-dependent reduction in HS frequency (induced by the 5-HT2A/2C agonist DOl), which appeared to be mediated via central nicotinic cholinergic receptors, since mecamylamine pretreatment abolished this effect. Conversely, twice daily subcutaneous injections of nicotine for 7 days, led to an increase in spontaneous and DOI-induced HS. Chronic nicotine also caused a significant elevation m plasma and whole brain KYN concentrations, but plasma TRP, HKY, HAA and KYNA were unaltered. In addition, no change in brain 5-HT or 5-HIAA concentrations or 5-HT turnover, was found. Despite contrasting results from human and animal studIes, a role for nicotine in the mediation of tic-like movements is indicated. The relevance of the kynurenine pathway to TS and the potential role played by nicotine in modifying tic-like behaviours is discussed.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, which accounts for over 95% of tryptophan metabolism. Two previous studies by this research group reported elevated plasma KYN in Tourette syndrome (TS) patients when compared with age and sex matched controls and another study showed that KYN potentiated 5-HT2A-mediated head-shakes (HS) in rodents. These movements have been suggested to model tics in TS. This raised the questions how KYN acts in eliciting this response and whether it is an action of its own or of a further metabolite along the kynurenine pathway. In the liver, where most of the kynurenine pathway metabolism takes place under physiological conditions, the first and the rate limiting enzyme is tryptophan-dioxygenase (TDO) which can be induced by cortisol. In extrahepatic tissues the same step of the pathway is catalyzed by indoleamine-dioxygenase (IDO), which is induced by cytokines, predominantly interferon-y (INF-y). Plasma neopterin, which shows parallel increase with KYN following immune stimulation, was also found elevated in one of these studies positively correlating with KYN. In the present work animal studies suggested that KYN potentiates and quinolinic acid (QUINA) dose dependently inhibits the 5-HT2A-mediated HS response in mice. The potentiating effect seen with KYN was suggested to be an effect of KYN itself. Radioligand binding and phosphoinositide (PI) hydrolysis studies were done to explore the mechanisms by which kynurenine pathway metabolites could alter a 5-HT2A-receptor mediated response. None of the kynurenine pathway metabolites tested showed direct binding to 5-HT2A-receptors. PI hydrolysis studies with KYN and QUINA showed that KYN did not have any effect while QUINA inhibited 5-HT2A-mediated PI hydrolysis. Plasma cortisol determination in TS patients with elevated plasma KYN did not show elevated plasma cortisol levels, suggesting that the increase of plasma KYN in these TS patients is unlikely to be due to an increased TDO activity induced by increased cortisol. Attention deficit hyperactivity disorder (ADHD) is commonly associated with TS. Salivary cortisol detected in a group of children primarily affected with ADHD showed significantly lower salivary cortisol levels when compared with age and sex matched controls. Plasma tryptophan, KYN, neopterin, INF-y and KYN/tryptophan ratio and night-time urinary 6-sulphatoxymelatonin (aMT6s) excretion measured in a group of TS patients did not show any difference in their levels when compared with age and sex matched controls, but TS patients failed to show the expected positive correlation seen between plasma INF-y, neopterin and KYN and the negative correlation seen between plasma KYN and night-time urinary aMT6s excretion seen in healthy controls. The relevance of the kynurenine pathway, melatonin secretion and cortisol to Tourette Syndrome and associated conditions and the mechanism by which KYN and QUINA alter the 5-HT2A-receptor mediated HS response are discussed.
Resumo:
The industrial solvent N, N-dimethylformamide (DMF) causes liver damage in humans. The hepatotoxicity of N-alkylformamides seems to be linked to their metabolism to N-alkylcarbamic acid thioesters. To clarify the role of metabolism in DMF hepatotoxicity, the metabolic fate of DMF was investigated in rodents. DMF was rapidly metabolised and excreted in the urine as N-hydroxymethyl-N-methyl-formamide (HMMF), N-acetyl-S-(N-methylcarbamoyl) cysteine (AMCC) and a metabolite measured as formamide by GLC. At high doses (0.7 and 7.0mmo1/kg) a small proportion of the dose was excreted unchanged. AMCC, measured by GLC after derivatisation to ethyl N-methylcarbamate, was a minor metabolite. Only 5.2% of the dose (0.1mmo1/kg) in rats or 1.2% in mice was excreted as AMCC. The minor extent of this metabolic pathway in rodents might account for the marginal liver damage induced by DMF in these species. In a collaborative study, volunteers were shown to metabolise DMF to AMCC to a greater extent than rodents. Nearly 15% of the inhaled dose (0.049mmo1/kg) was excreted as AMCC. This result suggests that the metabolic pathway leading to AMCC is more important in humans than in rodents. Consequently the risk associated with exposure to DMF might be higher in humans than in rodents. The metabolism of formamides to S-(N-alkylcarbamoyl) glutathione, the metabolic precursor of the thioester mercapturates, was studied using mouse, rat and human hepatic microsomes. The metabolism of NMF (10mM) to S-(N-methylcarbanoyl)glutathione (SMG) required the presence of GSH, NADPH and air. Generation of S-(N-methyl-carbamoyl)glutathione (SMG) was inhibited when incubations were conducted in an atmosphere of CO:air (1:1) or when SKF 525-A (3.0mM) was included in the incubations. Pre-treatment of mice with phenobarbitone (PB, 80mg/kg for 4 days) or beta-naphthoflavone (BNF, 50mg/kg for 4 days) failed to increase the microsomal formation of SMG from NMF. This result suggests that the oxidation of NMF is catalysed by a cytochrome P-450 isozyme which is unaffected by PB or BNF. Microsomal incubations with DMF (5 or 10mM) failed to generate measurable amounts of SMG although DMF was metabolised to HMMF. Incubations of microsomes with HMMF resulted in the generation of a small amount of SMG which was affected by inhibitors of microsomal enzymes in the same way as in the case of NMF. HMMF was metabolised to AMCC by rodents in vivo. This result suggests that HMMF is a major intermediate in the metabolic activation of DMF.
Resumo:
The purpose of this study was to investigate cortisol levels as a function of the hypothalamic-pituitary-adrenal axis (HPA) in relation to alexithymia in patients with somatoform disorders (SFD). Diurnal salivary cortisol was sampled in 32 patients with SFD who also underwent a psychiatric examination and filled in questionnaires (Toronto Alexithymia Scale, TAS scale; Screening for Somatoform Symptoms, SOMS scale; Hamilton Depression Scale, HAMD). The mean TAS total score in the sample was 55.69.6, 32% of patients being classified as alexithymic on the basis of their TAS scores. Depression scores were moderate (HAMD=13.2, Beck Depression Inventory, BDI=16.5). The patients' alexithymia scores (TAS scale Difficulty identifying feelings) correlated significantly positively with their somatization scale scores (Symptom Checklist-90 Revised, SCL-90-R); r=0.3438 (P0.05) and their scores on the Global Severity Index (GSI) on the SCL-90-R; r=0.781 (P0.01). Regression analysis was performed with cortisol variables as the dependent variables. Cortisol levels [measured by the area under the curve-ground (AUC-G), area under the curve-increase (AUC-I) and morning cortisol (MCS)] were best predicted in a multiple linear regression model by lower depressive scores (HAMD) and more psychopathological symptoms (SCL-90-R). No significant correlations were found between the patients' alexithymia scores (TAS) and cortisol levels. The healthy control group (n=25) demonstrated significantly higher cortisol levels than did the patients with SFD; in both tests P0.001 for AUC-G and AUC-I. However, the two groups did not differ in terms of their mean morning cortisol levels (P0.05). The results suggest that pre-existing hypocortisolism might possibly be associated with SFD.
Resumo:
Die vorliegende Studie prüft Zusammenhänge zwischen Arbeitsintensität, Tätigkeitsspielraum, sozialer Arbeitsumgebung (Kooperation/Kommunikation, soziale Unterstützung, soziale Stressoren) und Stresserleben am Arbeitsplatz mit der basalen Cortisolsekretion im Speichel (Tagesprofil, Aufwachreaktion und Variation über den Tag). Insgesamt 46 Erwerbstätige aus dem Bankwesen sammelten an zwei aufeinander folgenden Arbeitstagen je vier Speichelproben (beim Aufwachen, 30 min nach dem Aufwachen, 14 Uhr und unmittelbar vor dem Zubettgehen), aus denen die individuelle Cortisolkonzentration (Mittelwert aus den jeweils zugehörigen Proben) bestimmt wurde. Die Tätigkeitsmerkmale wurden sowohl mittels Fragebögen als auch objektiv, d.?h. unabhängig vom Arbeitsplatzinhaber, erhoben. Alter, Geschlecht, Rauchen, Body-Mass-Index, gesundheitliche Beeinträchtigungen sowie eventuelle Abweichungen bei der Probensammlung wurden als mögliche Drittvariablen berücksichtigt. Im Ergebnis zeigte sich, dass subjektiv erlebte, geringe soziale Unterstützung und hohe soziale Stressoren mit einer erhöhten Aufwachreaktion bzw. mit einer erhöhten Variation über den Tag assoziiert waren. Für die Arbeitsintensität, den Tätigkeitsspielraum sowie für die objektiv erhobene Kooperation/Kommunikation waren keine Effekte nachweisbar. Die Ergebnisse lassen vermuten, dass sowohl die Belastungs- als auch deren Erhebungsart für den Nachweis von Effekten im Hinblick auf die Cortisolsekretion bei Erwerbstätigen von Bedeutung sind. The present study examines associations between job demands, job control, social work environment (cooperation/communication, social support, social stressors), and strain at work with basal salivary cortisol (day profiles, cortisol awakening reaction, diurnal variation). Forty-six employees collected four saliva samples (immediately after waking up, 30 min after waking up, at 2 p.m. and immediately before going to bed) each on two consecutive working days. We computed the mean across the two days for each of the four saliva samples per employee. Job characteristics were assessed by self-reports as well as by objective job analysis. Analyses were controlled for possible confounding effects of age, gender, smoking, body-mass index, health impairments, and non compliance with the cortisol protocol. Results show that subjectively experienced low social support and high social stressors at work were associated with elevated cortisol awakening reaction and elevated diurnal variation. We found no effects for job demands, job control or objectively assessed cooperation/communication. Our results suggest that both the type of job characteristic as well as the type of measurement of job characteristics have to be taken into account when relating them to employees’ cortisol secretion.
Resumo:
An HPLC method has been developed and validated for the rapid determination of mercaptopurine and four of its metabolites; thioguanine, thiouric acid, thioxanthine and methylmercaptopurine in plasma and red blood cells. The method involves a simple treatment procedure based on deproteinisation by perchloric acid followed by acid hydrolysis and heating for 45min at 100 degrees C. The developed method was linear over the concentration range studied with a correlation coefficient >0.994 for all compounds in both plasma and erythrocytes. The lower limits of quantification were 13, 14, 3, 2, 95pmol/8 x 10(8) RBCs and 2, 5, 2, 3, 20ng/ml plasma for thioguanine, thiouric acid, mercaptopurine, thioxanthine and methylmercaptopurine, respectively. The method described is selective and sensitive enough to analyse the different metabolites in a single run under isocratic conditions. Furthermore, it has been shown to be applicable for monitoring these metabolites in paediatric patients due to the low volume requirement (200microl of plasma or erythrocytes) and has been successfully applied for investigating population pharmacokinetics, pharmacogenetics and non-adherence to therapy in these patients.