17 resultados para Correlative light and electron microscopy

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that chlorosulphonation is a major aid to the electron microscopy of polyethylene for various samples which had mostly been crystallized at high pressures and included at least a proportion of the so-called chain-extended form. It is confirmed that sheets of excess electron density are produced at lamellar surfaces, but also including lateral surfaces. This is due primarily to the incorporation of chlorine and sulphur rather than to added uranium. The time to achieve an overall reaction varies sensitively with morphology, decreasing as the number of diffusion channels increases. Crystallinity is gradually lost, but sufficient crystals remain when a sample has become uniform, and in their initial orientations, for diffraction studies to be possible. The technique has been used to demonstrate that, during melt crystallization, the thickness of one lamella changes in response to altered growth conditions. This is direct confirmation that lamellar thickness is determined by secondary nucleation at the growth front. The tapered profile of a growing lamella previously observed in thick crystals of various polymers has been observed for chain-folded polyethylene lamellae, providing further evidence that this is a general feature of melt growth. © 1977 Chapman and Hall Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The avidity of conidia and 48-h-old germlings of Coniothyrium minitans for FITC-conjugated lectins was characterised by flow cytometry and digital microscopy. Six isolates of C. minitans representing three morphological types were compared. Binding of Con A, SBA and WGA by conidial populations varied markedly in extent and pattern between isolates, however, with increasing culture age, conidia from all isolates demonstrated a significant reduction in lectin avidity. Germling isolates bound significantly different amounts of lectins and lectin binding differed significantly with locality. Spore walls of all germlings from all isolates bound more ConA compared with hyphal apices and mature hyphal walls. In contrast, hyphal apices of the majority of germling isolates, readily bound SBA and mature hyphal walls of germling isolates bound more WGA than other regions of the germlings. Such differential lectin binding by conidia and germlings may influence their specific surface interactions and adherence characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed.  The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14and calculations of areal density of thin foils using Rutherford backscattering data.  Amniotic fluid samples supplied by South Sefton Health Authority were successfully analysed for their low base line elemental concentrations. In conclusion the findings of this work are discussed with suggestions for further work .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thymic anlagen appears in Tilapia mossambica at 2 days post hatching and becomes lymphoid at 5 days. Lymphoid cells were first seen in the pronephros at 14 days and in the spleen at approximately five weeks of age. Differentiation into red and white pulp regions was seen by 10 weeks of age. Light and electron microscopic studies of adult lymphoid organ revealed increases in size and lymphoid cell numbers. Adult thymus develops a clearer corticomedullary differentiation of thymic corpuscles in the medulla and in the splenic red and white pulp became more distinct. Melanomacrophage centres were seen in spleen and pronephros. Adult fish gave primary and secondary antibody responses following challenge with sheep red bloods cells (SRBC), Escherichia coli (E. coli) and human gamma globulin (HGG). Plaque forming cell and immunocytoadherence assays revealed that head kidney and spleen were major sites for antibody production and development of antigen reactive cells. Proliferative activity in these organs was revealed using autoradiography and scintillation counting. Increased levels of pyroninophilia were also seen following antigenic challenge. Pilot studies on adults revealed that they were capable of rejecting first and second set allografts and leucocytes from spleen and head kidney proliferated in mixed leucocyte cultures. Antibody responses to SRBC, E. coli and HGG develop at about 10-12 weeks of age. Fry given either a single injection of SRBC at 10 weeks or two injections of the same antigen at 10 weeks and 12 days later, failed to respond to a further challenge with SRBC 56 days after the first injection (A time when animals would normally respond positively to this antigen). Injection of E. coli at the same times resulted in a prolonged antibody response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

William J. Hausman, Peter Hertner, and Mira Wilkins. Global Electrification: Multinational Enterprise and International Finance in the History of Light and Power, 1878–2007. New York: Cambridge University Press, 2008. xxiv + 487 pp. ISBN 978-0-521-88035-0, $80 (hardcover).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acanthamoebae, in common with other protozoa, readily endocytose particulate material, which in turn may lead to the spread of infectious disease. Methods: Evaluation and quantification of plain and carboxylate FITC-microsphere association with acanthamoebal trophzoites was undertaken using a combination of flow cytometry and confocal microscopy. Trophozoites from strains and species of Acanthamoeba were exposed to plain and carboxylate FITC-microspheres. Microsphere size and aspects such as trophozoite starvation, maturity, and exposure to metabolic inhibitors were assessed. Results: All species and strains of Acanthamoeba readily endocytosed plain and carboxylate microspheres. Starving trophozoites significantly increased binding and potential ingestion of microspheres, whereas trophozoites of increasing maturity lost such abilities. Trophozoites showed a significant preference for 2.0- and 3.0-μm-diameter microspheres when compared with other sizes, which in turn could occupy much of the cytoplasm. The physiological inhibitors sodium azide, 2,4-clinitrophenol, and cytochalasin B reduced microsphere association with trophozoites; however, some microspheres still bound and associated with trophozoites after inhibitor exposure, a manifestation of both active and inactive agent involvement in microsphere endocytosis. Conclusions: Even though the origins of microsphere binding by acanthamoebal trophozoite remains shrouded, the combination of flow cytometry and confocal microscopy supported synergistic quantification and qualification of trophozoite-microsphere endocytosis. © 2006 International Society for Analytical Cytology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature available on submerged arc welding of copper and copper alloys, submerged arc welding with strip electrodes, and related areas has been reviewed in depth. Copper cladding of mild steel substrates by deposition from strip electrodes using the submerged arc welding process has been successful. A wide range of parameters, and several fluxes have been investigated. The range of deposit compositions is 66.4% Cu to 95.7% Cu. The weld beads have been metallographically examined using optical and electron microscopy. Equating weld beads to a thermodynamical equivalent of iron has proven to be an accurate and simplified means of handling quantitative data for multicomponent welds. Empirical equations derived using theoretical considerations characterize the weld bead dimensions as functions of the welding parameters and hence composition. The melting rate for strip electrodes is dependent upon the current-voltage product. Weld nugget size is increased by increased thermal transfer efficiencies resulting from stirring which is current dependent. The presence of Fe2O3 in a flux has been demonstrated to diminish electrode melting rate and drastically increase penetration, making flux choice the prime consideration in cladding operations. A theoretical model for welding with strip electrodes and the submerged arc process is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are currently few biomaterials which combine controlled degradation rates with ease of melt processability. There are however, many applications ranging from surgical fixation devices to drug delivery systems which require such combination properties. The work in this thesis is an attempt to increase the availability of such materials. Polyhydroxybutyrate-polyhydroxyvalerate copolymers are a new class of potentially biodegradable materials, although little quantitative data relating to their in vitro and in vivo degradation behaviour exists. The hydrolytic degradation of these copolymers has been examined in vitro under conditions ranging from `physiological' to extremes of pH and elevated temperature. Progress of the degradation process was monitored by weight loss and water uptake measurement, x-ray diffractometry, optical and electron microscopy, together with changes in molecular weight by gel permeation chromatography. The extent to which the degradation mechanism could be modified by forming blends with polysaccharides and polycaprolactone was also investigated. Influence of the valerate content, molecular weight, crystallinity, together with the physical form of the sample, the pH and the temperature of the aqueous medium on the hydrolytic degradation was investigated. Its progress was characterised by an initial increase in the wet weight, with concurrent decrease in the dry weight as the amorphous regions of the polymer are eroded, thereby producing an increase in matrix porosity. With the polysaccharide blends, this initial rate is dramatically affected, and erosion of the polysaccharide from the matrix markedly increases the internal porosity which leads to the eventual collapse of the matrix, a process which occurs, but less rapidly, in the degradation of the unblended polyhydroxybutyrate-polyhydroxyvalerate copolymers. Surface energy measurement and goniophotometry proved potentially useful in monitoring the early stages of the degradation, where surface rather than bulk processes predominate and are characterised by little weight loss.