6 resultados para Coordination chemistry
em Aston University Research Archive
Resumo:
The ligand 2-(2-pyridyl)benzothiazole (L) can act both as an N-N and an N-S chelating donor. The latter coordination mode is expected to be preferred when it is involved in coordination to Ru(II) which is a soft acceptor centre However, in the title compound, chlorobis(acetonitrile)triphenylphosphino-2-(2-pyridyl)benzothiazole-N,N-ruthenium(II) chlride, [Ru(L)(PPh3(CH3CN)2Cl]Cl, the ligand acts in N,N-bidentate manner and the Ru(II) ion is found to be present in an N4PCl coordination environment. PPh3 and Cl are trans to each other and the two CH3CN ligands occupy cis positions facing the NN donor atoms of ligand L.
Resumo:
The development of ideas and theories concerning the structure of glazes, as one of the glassy materials, are reviewed in the general introduction. The raw materials and the manufacturing process for glazes are described (Chapter One). A number of new vanadyl(IV) dipyridylamine and tripyrldylamine complexes have been prepared, various spectroscopic techniques are used in the investigation of the vanadyl ion in a weak ligand field, the situation of those found in a glaze environment (Chapter Three). In glaze recipes containing silica, potash feldspar, china clay, MO(M= Ca, Sr, Sa, Ti and Zn) and NiO, the ligand field theory is used in the elucidation of the effect of M (in MO) on the absorption spectra and coordination behaviour of Ni(II) in glazes. The magnetic and visible spectral results are reviewed in terms of Dietzel's idea of field strength of M and also in terms of Shteinberg's theory of glaze structure. X-ray diffraction is used for the identification of various species that formed after the firing process of glazes (Chapter Four). In Chapter Five, [] Mossbauer spectroscopy, supplemented by E.S.R., X-ray and visible spectral measurements are used in the investigation of iron in a glaze composition similar to that used in Chapter Four. The Mossbauer results are used in following the influence of; M in MO (M= Sr, Ca and Ba), oxides of titanium(IV) and vanadium(V ), and firing conditions on the chemistry of iron. Generally the iron(II) and iron(III) in the fired glazes are in octahedral sites although there are a range of similar, though not identical environments. A quite noticable influence of M (in MO) on the resonance line width is seen. In one case evidence is found for iron(IV) in an iron/vanadium glaze. E.S.R. of vanadium containing glazes indicate that vanadium is present as V02+ in a highly distorted tetragonal environment .
Resumo:
The primary theme of this research was the characterisation of new and novel organo-tellurium complexes, using the technique of single crystal X-ray analysis to establish more firmly the various coordination modes of tellurium. In each study the unit cell dimensions and intensity data were collected using an Enraf-Nonius CAD-4, four circle diffractometer. The raw data collected in turn was transferred to the Birmingham University Honeywell Multics System and processed using the appropriate computer packages for the determination of crystal structures. The molecular and crystal structures of: bis[2-(2-pyridyl)phenyl]tritelluride, bis[2-(N-hydroxy)iminophenyl] ditelluride, 2-(2-pyridyl)phenyltellurium(IV) tribromide, (2-N,N-dimethylbenzylamine-C,N')tellurium(IV)tribromide, 2-dichloro(butyl)tellurobenzaldehyde, 2-dichlorobutotelluro-N-dimethylbenzyl ammonium chloride, dimethyldithiocarbamato[2-(2-pyridyl)phenyl]tellurium(II), dimethyldithiocarbamato[2-(2-quinolinyl)phenyl]tellurium(II) and para-ethoxypheny[2-(2-pyridyl)phenyl]telluride are described. In each structure, the Lewis acidity of tellurium appears to be satisfied by autocomplex formation, through short-range intramolecular secondary bonds between tellurium and an electron denoting species, (generally nitrogen in these structures) with long range weak inter molecular contacts forming in the majority of the tellurium(IV) structures. The order of Lewis acidity in each structure can be considered to be reflected by the length of the short range intramolecular secondary bond, identified, that is, when tellurium has a low Lewis acidity this interaction is long. Interestingly, no primary bonds are found trans to a Te-C covalent bond in any of the above structures, highlighting the strong trans effect of aromatic and aryl groups in tellurium complexes.
Resumo:
Perturbations in the bismuth market resulted in Mining and Chemical Products Ltd., seeking further outlets in the market. Together with Manchem Ltd. they were anxious to evaluate the possibility of using bismuth compounds as a replacement for lead/calcium soaps in paint driers. A range of new organobismuth compounds were synthesised of the type RBiX2 and R3BiX2 (X= halogen, OOCR, dithiocarbamate). A variety of synthetic techniques were explored, including the use of mathematical reactions, phase-transfer catalysis and microwave energy. The preparation of a range of trivalent and pentavalent organobismuth carboxylates is reported and their infra-red , 13C, lH nmr spectra. The compounds were evaluated as paint driers and in cases found to enhance paint drying to a greater degree than the standard driers, to which they were being compared. The drying times of paint films containing the organobismuth compounds are reported, together with a comparison of the drying times with the addition of bismuth tris-diethyldithiocarbamate, which may promote the cross-linking reaction that occur in paint films during the drying process. Examples are reported to illustrate the great reductions in reaction times possible when using microwave energy. Reactions such as metallation of aromatic rings, ligand redistribution and synthesis were carried out in PTFE containers in a conventional domestic microwave oven. An X-ray diffraction study of (phenylazophenyl-C,N')mercury(II) chloride has shown it to be dimeric via long Hg-Cl bridging interactions of 3.367A. Its crystal structure is reported, together with its 13C nmr spectra and mass spectrum. The Lewis acidity of compounds of the type RBiX2 was investigated. The donor group being anchored to the organo group (R). The dithiocarbamates bis- (diethyldithiobarbamato)phenylbismuth(Ill) and [2-2-pyridyl)phenylbismuth(III) were synthesised, and their crystal structures, 14N, 13C nmr ar1d infra-red spectra are reported. Both compounds are pseudo-pentagonal bipyramidal in geometry, with two long Bi-S bonds and two short Bi-S bonds. The reaction of RBiBr2 (R= 2-(pyridyl) with various ligands is reported. The infra-red evidence suggesting that the coordination of extra ligands is accompanied by a reduction of the strength of the Bi-interaction.
Resumo:
A study of clay chemistry has been approached with three aims: - to modify the conducting properties by intercalation of tetrathiafulvalene, - to study the electrochemistry of redox-active coordination compounds immobilised on clay coated electrodes, and - to study the role of clays as reagents in inorganic glass forming reactions using mainly solid-state magic-angle-spinning NMR. TTF was intercalated by smectites containing different interlayer and lattice cations. Evidence from ESR and 57Fe Mossbauer indicated charge-transfer from TTF to structural iron in natural montmorillonite, and to interlayer Cu2+ in Cu2+ exchanged laponite. No charge transfer was observed for laponite (Na+ form) itself. Ion exchange of TTF3(BF4)2 with laponite was found to proceed quantitatively. The intercalated species were believed to be (TTF)2+ dimers. Conductivity data showed an order of magnitude increase for the intercalated clays. The mechanism is thought to be ionic rather than CT as Na+ laponite showed a similar enhancement in conductivity. Mechanically robust colloidal clay films were prepared on platinum electrodes. After immersion in solutions containing redox active complexes [Co(bpy)3]3+ and [Cr(bpy)3]3+, the films became electroactive when a potential was applied. Cyclic voltammograms obtained for both complexes were found to be of the diffusion controlled type. For [Co(bpy)3]3+ immobilised on clay coated electrodes, a one-step oxidation and four-step reduction wave was observed corresponding to a one electron stepwise reversible reduction of Co(III), through Co(II), Co(I), Co(O) to Co(I) oxidation state. For [Cr(bpy)3]3+ the electrochemistry was complicated by the presence of additional waves corresponding to the dissociation of [Cr(bpy)3]3+ into the diaquo complex. ESR and diffuse reflectance data supported such a mechanism. 29Si, 27Al and 23Na MAS NMR spectroscopy, supported by powder XRD and FTIR, was used to probe the role of clays as reagents in glass forming reactions. 29Si MAS NMR was found to be a very sensitive technique for identifying the presence and relative abundance of crystalline and non-crystalline phases. In thermal reactions of laponite formation of new mineral phases such as forsterite, akermanite, sillimanite and diopside were detected. The relative abundance of each phase was dependent on thermal history, chemical nature and concentration of the modifier oxide present. In continuing work, the effect of selected oxides on the glass forming reactions of a model feldspar composition was investigated using solid state NMR alone. Addition of network modifying oxides generally produced less negative 29Si chemical shifts and larger linewidths corresponding to a wider distribution of Si-O-Si bond angles and lengths, and a dominant aluminosilicate phase with a less polymerised structure than the starting material. 29Si linewidths and 27Al chemical shifts were respectively correlated with cationic potential and Lewis acidity of the oxide cations. Anomalous Al(4) chemical shifts were thought to be due to precipitation of aluminate phases rather than a breakdown in Lowenstein's aluminium avoidance principle.
Resumo:
A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while ICP, XRD, LPHR-Ar physisorption, and 27Al MAS NMR were applied to characterize the structure and texture of the resulting materials. The material properties were compared to calcination. By understanding the interplay of relevant parameters of the Fenton chemistry, the process can be optimized in order to make it industrially attractive for scale-up. The H2O2 utilization can be minimized down to 15 mL H2O2/g (88 °C, 30 ppm Fe), implying a high solid concentration and low consumption of H2O2. When Fe concentration must be minimized, values as low as 5 ppm Fe can be applied (88 °C, 30 mL H2O2/g), to achieve full detemplation. The reaction time to completeness can be reduced to 5 h when combining a Fe-oxalate catalyst with UV radiation. The protocol was scaled up to 100 times larger its original recipe. In terms of the material's properties, the scaled material is structurally comparable to the calcined counterpart (comparable Si/Al and XRD patterns), while it displays benefits in terms of texture and Al-coordination, the latter with full preservation of the tetrahedral Al