26 resultados para Convexity in Graphs

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resource allocation in sparsely connected networks, a representative problem of systems with real variables, is studied using the replica and Bethe approximation methods. An efficient distributed algorithm is devised on the basis of insights gained from the analysis and is examined using numerical simulations,showing excellent performance and full agreement with the theoretical results. The physical properties of the resource allocation model are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of resource allocation in sparse graphs with real variables is studied using methods of statistical physics. An efficient distributed algorithm is devised on the basis of insight gained from the analysis and is examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is defined based on observed units and by finding the distance of each unit to the border of estimated production possibility set (PPS). The convexity is one of the underlying assumptions of the PPS. This paper shows some difficulties of using standard DEA models in the presence of input-ratios and/or output-ratios. The paper defines a new convexity assumption when data includes a ratio variable. Then it proposes a series of modified DEA models which are capable to rectify this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colouring sparse graphs under various restrictions is a theoretical problem of significant practical relevance. Here we consider the problem of maximizing the number of different colours available at the nodes and their neighbourhoods, given a predetermined number of colours. In the analytical framework of a tree approximation, carried out at both zero and finite temperatures, solutions obtained by population dynamics give rise to estimates of the threshold connectivity for the incomplete to complete transition, which are consistent with those of existing algorithms. The nature of the transition as well as the validity of the tree approximation are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research investigates the past, present and potential future role of Information Specialists (ISps) in process oriented companies. It tests the proposition that ISps in companies that have undertaken formal process reengineering exercises are likely to become more proactive and more business oriented (as opposed to technically oriented) than they had previously been when their organisations were organised along traditional, functional lines. A review of existing literature in the area of Business Process Reengineering and Information Management reveals a lack of consensus amongst researchers concerning the appropriate role for ISps during and after BPR. Opinion is divided as to whether IS professionals should reactively support BPR or whether IT/IS developments should be driving these initiatives. A questionnaire based ‘Descriptive Survey’ with 60 respondents is used as a first stage of primary data gathering. This is followed by follow-up interviews with 20 of the participating organisations to gather further information on their experiences. The final stage of data collection consists of further in-depth interview with four case study companies to provide an even richer picture of their experiences. The results of the questionnaire are analysed and displayed in the form of simple means, frequencies and bar graphs. The ‘NU-DIST’ computer based discourse analysis package was tried in relation to summarising the interview findings, but this proved cumbersome and a visual collation method is preferred. Overall, the researcher contends that the supposition outlined above is proven, and she concludes the research by suggesting the implications of these findings. In particular she offers a ‘Framework for Understanding and Action’ which is deemed to be relevant to both practitioners and future researchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes a novel graphical model for inference called the Affinity Network,which displays the closeness between pairs of variables and is an alternative to Bayesian Networks and Dependency Networks. The Affinity Network shares some similarities with Bayesian Networks and Dependency Networks but avoids their heuristic and stochastic graph construction algorithms by using a message passing scheme. A comparison with the above two instances of graphical models is given for sparse discrete and continuous medical data and data taken from the UCI machine learning repository. The experimental study reveals that the Affinity Network graphs tend to be more accurate on the basis of an exhaustive search with the small datasets. Moreover, the graph construction algorithm is faster than the other two methods with huge datasets. The Affinity Network is also applied to data produced by a synchronised system. A detailed analysis and numerical investigation into this dynamical system is provided and it is shown that the Affinity Network can be used to characterise its emergent behaviour even in the presence of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If, as is widely believed, schizophrenia is characterized by abnormalities of brain functional connectivity, then it seems reasonable to expect that different subtypes of schizophrenia could be discriminated in the same way. However, evidence for differences in functional connectivity between the subtypes of schizophrenia is largely lacking and, where it exists, it could be accounted for by clinical differences between the patients (e.g. medication) or by the limitations of the measures used. In this study, we measured EEG functional connectivity in unmedicated male patients diagnosed with either positive or negative syndrome schizophrenia and compared them with age and sex matched healthy controls. Using new methodology (Medkour et al., 2009) based on partial coherence, brain connectivity plots were constructed for positive and negative syndrome patients and controls. Reliable differences in the pattern of functional connectivity were found with both syndromes showing not only an absence of some of the connections that were seen in controls but also the presence of connections that the controls did not show. Comparing connectivity graphs using the Hamming distance, the negative-syndrome patients were found to be more distant from the controls than were the positive syndrome patients. Bootstrap distributions of these distances were created which showed a significant difference in the mean distances that was consistent with the observation that negative-syndrome diagnosis is associated with a more severe form of schizophrenia. We conclude that schizophrenia is characterized by widespread changes in functional connectivity with negative syndrome patients showing a more extreme pattern of abnormality than positive syndrome patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inference and optimization in sparse graphs with real variables is studied using methods of statistical mechanics. Efficient distributed algorithms for the resource allocation problem are devised. Numerical simulations show excellent performance and full agreement with the theoretical results. © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems. © 2014 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DBpedia has become one of the major sources of structured knowledge extracted from Wikipedia. Such structures gradually re-shape the representation of Topics as new events relevant to such topics emerge. Such changes make evident the continuous evolution of topic representations and introduce new challenges to supervised topic classification tasks, since labelled data can rapidly become outdated. Here we analyse topic changes in DBpedia and propose the use of semantic features as a more stable representation of a topic. Our experiments show promising results in understanding how the relevance of features to a topic changes over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.