32 resultados para Conventional adhesive system
em Aston University Research Archive
Resumo:
The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.
Resumo:
The main aim of this work was to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigonox 101, T101) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with the increasing DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this reflects that the side reactions were favourable in the conventional grafting system.
Resumo:
We propose a novel recursive-algorithm based maximum a posteriori probability (MAP) detector in spectrally-efficient coherent wavelength division multiplexing (CoWDM) systems, and investigate its performance in a 1-bit/s/Hz on-off keyed (OOK) system limited by optical-signal-to-noise ratio. The proposed method decodes each sub-channel using the signal levels not only of the particular sub-channel but also of its adjacent sub-channels, and therefore can effectively compensate deterministic inter-sub-channel crosstalk as well as inter-symbol interference arising from narrow-band filtering and chromatic dispersion (CD). Numerical simulation of a five-channel OOK-based CoWDM system with 10Gbit/s per channel using either direct or coherent detection shows that the MAP decoder can eliminate the need for phase control of each optical carrier (which is necessarily required in a conventional CoWDM system), and greatly relaxes the spectral design of the demultiplexing filter at the receiver. It also significantly improves back-to-back sensitivity and CD tolerance of the system.
Resumo:
This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.
Resumo:
The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Conventional project management techniques are not always sufficient to ensure time, cost and quality achievement of large-scale construction projects due to complexity in planning, design and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in government policies and regulations, unforeseen inflation, underestimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk management throughout the project's life cycle. However, the effectiveness of risk management depends on the technique through which the effects of risk factors are analysed/quantified. This study proposes the Analytic Hierarchy Process (AHP), a multiple attribute decision making technique, as a tool for risk analysis because it can handle subjective as well as objective factors in a decision model that are conflicting in nature. This provides a decision support system (DSS) to project management for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and a competitive business environment. The whole methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%
Resumo:
We experimentally investigate a long-distance, high-bit-rate transmission system which combines optical-phase-conjugation with quasi-lossless amplification. Comparison with a conventional system configuration demonstrates the possibility of obtaining both dispersion compensation and improved nonlinear tolerance using proposed scheme.
Resumo:
The objective of this work has been to investigate the principle of combined bioreaction and separation in a simulated counter-current chromatographic bioreactor-separator system (SCCR-S). The SCCR-S system consisted of twelve 5.4cm i.d x 75cm long columns packed with calcium charged cross-linked polystyrene resin. Three bioreactions, namely the saccharification of modified starch to maltose and dextrin using the enzyme maltogenase, the hydrolysis of lactose to galactose and glucose in the presence of the enzyme lactase and the biosynthesis of dextran from sucrose using the enzyme dextransucrase. Combined bioreaction and separation has been successfully carried out in the SCCR-S system for the saccharification of modified starch to maltose and dextrin. The effects of the operating parameters (switch time, eluent flowrate, feed concentration and enzyme activity) on the performance of the SCCR-S system were investigated. By using an eluent of dilute enzyme solution, starch conversions of up to 60% were achieved using lower amounts of enzyme than the theoretical amount required by a conventional bioreactor to produce the same amount of maltose over the same time period. Comparing the SCCR-S system to a continuous annular chromatograph (CRAC) for the saccharification of modified starch showed that the SCCR-S system required only 34.6-47.3% of the amount of enzyme required by the CRAC. The SCCR-S system was operated in the batch and continuous modes as a bioreactor-separator for the hydrolysis of lactose to galactose and glucose. By operating the system in the continuous mode, the operating parameters were further investigated. During these experiments the eluent was deionised water and the enzyme was introduced into the system through the same port as the feed. The galactose produced was retarded and moved with the stationary phase to be purge as the galactose rich product (GalRP) while the glucose moved with the mobile phase and was collected as the glucose rich product (GRP). By operating at up to 30%w/v lactose feed concentrations, complete conversions were achieved using only 48% of the theoretical amount of enzyme required by a conventional bioreactor to hydrolyse the same amount of glucose over the same time period. The main operating parameters affecting the performance of the SCCR-S system operating in the batch mode were investigated and the results compared to those of the continuous operation of the SCCR-S system. . During the biosynthesis of dextran in the SCCR-S system, a method of on-line regeneration of the resin was required to operate the system continuously. Complete conversion was achieved at sucrose feed concentrations of 5%w/v with fructose rich. products (FRP) of up to 100% obtained. The dextran rich products were contaninated by small amounts of glucose and levan formed during the bioreaction. Mathematical modelling and computer simulation of the SCCR-S. system operating in the continuous mode for the hydrolysis of lactose has been carried out. .
Resumo:
The ability of Escherichia coli to express the K88 fimbrial adhesin was satisfactorily indicated by the combined techniques of ELISA, haemagglutination and latex agglutination. Detection of expression by electron microscopy and the ability to metabolize raffinose were unsuitable. Quantitative expression of the K88 adhesin was determined by ELISA. Expression was found to vary according to the E.coli strain examined, media type and form. In general it was found that the total amount was greater, while the amount/cfu was less on agar than in broth cultures. Expression of the K88 adhesin during unshaken batch culture was related to the growth rate and was maximal during late logarithmic to early stationary phase. A combination of heat extraction, ammonium sulphate and isoelectric precipitation was found suitable for both large and small scale preparation of purified K88ab adhesin. Extraction of the K88 adhesin was sensitive to pH and it was postulated that this may affect the site of colonisation of by ETEC in vivo. Results of haemagglutination experiments were consistent with the hypothesis that the K88 receptor present on erythrocytes is composed of two elements, one responsible for the binding of K88ab and K88ac and a second responsible for the binding of the K88ad adhesin. Comparison of the haemagglutinating properties of cell-free and cell-bound K88 adhesin revealed some differences probably indicating a minor conformational change in the K88 adhesin on its isolation. The K88ab adhesin was found to bind to erythrocytes over a wide pH range (PH 4-9) and was inhibited by αK88ab and αK88b antisera. Inhibition of haemagglutination was noted with crude heparin, mannan and porcine gastric mucin, chondrosine and several hexosamines, glucosamine in particular. The most potent inhibitor of haemagglutination was n-dodecyl-β-D-glucopyranoside, one of a series of glucosides found to have inhibitory properties. Correlation between hydrophobicity of glucosides tested and degree of inhibition observed suggested hydrophobic forces were important in the interaction of the K88 adhesin with its receptor. The results of Scatchard and Hill plots indicated that binding of the K88ab adhesin to porcine enterocytes in the majority of cases is a two-step, three component system. The first K88 receptor (or site) had a K2. of 1.59x1014M-1 and a minimum of 4.3x104 sites/enterocyte. The second receptor (or site) had a K2 of 4.2x1012M-1 with a calculated 1.75x105 sites/enterocyte. Attempts to inhibit binding of cell-free K88 adhesin to porcine enterocytes by lectins were unsuccessful. However, several carbohydrates including trehalose, lactulose, galactose 1→4 mannopyranoside, chondrosine, galactosamine, stachyose and mannan were inhibitory. The most potent inhibitor was found to be porcine gastric mucin. Inhibition observed with n-octyl-α-D-glucopyranose was difficult to interpret in isolation because of interference with the assay, however, it agreed with the results of haemagglutination inhibition experiments.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.