39 resultados para Controlled Release
em Aston University Research Archive
Resumo:
Increasingly complicated medication regimens associated with the necessity of the repeated dosing of multiple agents used in treating pulmonary disease has been shown to compromise both disease management and patient convenience. In this study the viability of spray drying to introduce controlled release vectors into dry powders for inhalation was investigated. The first experimental section highlights the use of leucine in producing highly respirable spray dried powders, with in vitro respirable fractions (Fine particle fraction, FPF: F < 5µm) exceeding 80% of the total dose. The second experimental chapter introduces the biocompatible polymer chitosan (mw 190 – 310 kDa) to formulations containing leucine with findings of increased FPF with increasing leucine concentration (up to 82%) and the prolonged release of the active markers terbulataline sulfate (up to 2 hours) and beclometasone dipropionate (BDP: up to 12 hours) with increasing chitosan molecular weight. Next, the thesis details the use of a double emulsion format in delivering the active markers salbutamol sulfate and BDP at differing rates; using the polymers poly-lactide co-glycolide (PLGA 50:50 and PLGA 75:25) and/or chitosan incorporating leucine as an aerosolisation enhancer the duration of in vitro release of both agents reaching 19 days with FPF exceeding 60%. The final experimental chapter involves dual aqueous and organic closed loop spray drying to create controlled release dry powders for inhalation with in vitro sustained release exceeding 28 days and FPF surpassing 55% of total loaded dose. In conclusion, potentially highly respirable sustained release dry powders for inhalation have been produced by this research using the polymers chitosan and/or PLGA as drug release modifiers and leucine as an aerosolisation enhancer.
Resumo:
It is advantageous to develop controlled release dosage forms utilising site-specific delivery or gastric retention for those drugs with frequent or high dosing regimes. Cimetidine is a potent and selective H2 -reception antagonist used in the treatment of various gastrointestinal disorders and localisation in the upper gastrointestinal tract could significantly improve the drug absorption. Three strategies were undertaken to prepare controlled release systems for the delivery of cimetidine to the GI tract. Firstly, increasing the contact time of the dosage form with the mucus layer which coats the gastrointestinal tract, may lead to increased gastric residence times. Mucoadhesive microspheres, by forming a gel-like structure in contact with the mucus, should prolong the contact between the delivery system and the mucus layer, and should have the potential for releasing the drug in sustained and controlled manner. Gelatin microspheres were prepared, optimised and characterised for their physicochemical properties. Crosslinking concentration, particle size and cimetidine loading influenced drug release profiles. Particle size was influenced by surfactant concentration and stirring speed. Mucoadheisve polymers such as alginates, chitosans, carbopols and polycarbophil were incorporated into the microspheres using different strategies. The mucoadhesion of the microspheres was determined using in vitro surface adsorption and ex vivo rat intestine models. The surface-modification strategy resulted in highest levels of microsphere adhesion, with chitosan, carbopols and polycarbophil as the most successful candidates for improvement of adhesion, with over 70% of the microspheres retained ex vivo. Specific targeting agent UEA I lectin was conjugated to the surface of gelatin microspheres, which enhanced the adhesion of the microspheres. Alginate raft systems containing antacids have been used extensively in the treatment of gastro-oesophageal disease and protection of the oesophageal mucosa from acid reflux by forming a viscous raft layer on the surface of the stomach content, and could be an effective delivery system for controlled release of cimetidine.
Resumo:
This work has used novel polymer design and fabrication technology to generate bead form polymer based systems, with variable, yet controlled release properties, specifically for the delivery of macromolecules, essentially peptides of therapeutic interest. The work involved investigation of the potential interaction between matrix ultrastructural morphology, in vitro release kinetics, bioactivity and immunoreactivity of selected macromolecules with limited hydrolytic stability, delivered from controlled release vehicles. The underlying principle involved photo-polymerisation of the monomer, hydroxyethyl methacrylate, around frozen ice crystals, leading to the production of a macroporous hydrophilic matrix. Bead form matrices were fabricated in controllable size ranges in the region of 100µm - 3mm in diameter. The initial stages of the project involved the study of how variables, delivery speed of the monomer and stirring speed of the non solvent, affectedthe formation of macroporous bead form matrices. From this an optimal bench system for bead production was developed. Careful selection of monomer, solvents, crosslinking agent and polymerisation conditions led to a variable but controllable distribution of pore sizes (0.5 - 4µm). Release of surrogate macromolecules, bovine serum albumin and FITC-linked dextrans, enabled factors relating to the size and solubility of the macromolecule on the rate of release to be studied. Incorporation of bioactive macromolecules allowed retained bioactivity to be determined (glucose oxidase and interleukin-2), whilst the release of insulin enabled determination of both bioactivity (using rat epididymal fat pad) and immunoreactivity (RIA). The work carried out has led to the generation of macroporous bead form matrices, fabricated from a tissue biocompatible hydrogel, capable of the sustained, controlled release of biologically active peptides, with potential use in the pharmaceutical and agrochemical industries.
Resumo:
The facility to controlled triggered release from a “cage” system remains a key requirement for novel drug delivery. Earlier studies have shown that Bis-Azo PC based photosensitive liposomes are beneficial for drug delivery. Thus, the aim of this project was to develop photosensitive liposomes that can be used for the controlled release of drugs through UV irradiation, particularly therapeutic agents for the treatment of psoriasis. Bis-Azo PC was successfully synthesized and incorporated into a range of liposomal formulations, and these liposomes were applied for the controlled release of BSA-FITC. Bis-Azo PC sensitized liposomes were prepared via interdigitation fusion method. IFV containing optimum cholesterol amount in terms of protein loading, stability and photo-trigger release of protein was investigated. Further studies investigated the stability and triggered release of the HMT from IFV. Finally, permeation behavior of HMT and HMT-entrapped IFV through rat skin was examined using Franz cell. Results from protein study indicated that the stable entrapment of the model protein was feasible as shown through fluorescence spectroscopy and maximum of 84% protein release from IFV after 12 min of UV irradiation. Moreover, stability studies indicated that IFV were more stable at 4 0C as compared to 25 0C. Hence, DPPC:Chol:Bis-Azo PC (16:2:1) based IFV was chosen for the controlled release of HMT and these studies exhibited that photo-trigger release and stability data of HMT-entrapped IFV are in line with the protein results. Franz cell work inferred that HMT-entrapped IFV attributed to slower skin permeation as compared to HMT. CLSM also demonstrated that HMT can be used as a fluorescent label for the in vitro skin study. Overall, the work highlighted in this thesis has given useful insight into the potentials of Bis-Azo PC based IFV as a promising carrier for the treatment of psoriasis.
Resumo:
Biomimetic hydroxyapatite was synthesized by the controlled release of calcium and phosphate ions from poly(N-isopropylacrylamide-co-acrylic acid) (poly(NIPAAm-co-AA)) nanogels. Mixing nanogels containing calcium chloride (CaCl2 ·2H2O) and nanogels containing sodium hydrogen phosphate (Na2HPO4·2H2O) in simulated body fluid (SBF) at physiological conditions of 37 °C and pH 7.4, biomimetic hydroxyapatite was obtained. By studying separately the loading and controlled release of the salts from the nanogels, adequate conditions were chosen to synthesize the hydroxyapatite: Calcium loaded (Ca-loaded) nanogels (1000 mg/ml; 400:3) and inorganic phosphate loaded (Pi-loaded) nanogels (90 mg/ml; 12:1) in a ratio of 2:1 were placed in SBF solution. The obtained powders characterization showed that a low crystalline and substituted hydroxyapatite similar to bone apatite was formed. Such a strategy could be used in medical and dental procedures to induce rapid inorganic mineral formation from a nanogel-containing biomaterial. © 2012 American Scientific Publishers. All rights reserved.
Resumo:
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2 minutes to 7 hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or Sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.
Resumo:
The mechanism behind the immunostimulatory effect obtained with the cationic liposomal vaccine adjuvant DDA:TDB remains unclear. One of the proposed hypotheses is the 'depot effect' in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. In the present study we devise a method to quantify the in vivo movement of liposomes and vaccine antigen using the radioisotopes H(3) and I(125) respectively. H(3)-labeled liposomes composed of dimethyldioctadecylammonium bromide (DDA) or an 8:1 molar ratio of DDA and trehalose 6,6-dibehenate (TDB) were administered in combination with I(125)-labeled Ag85B-ESAT-6 antigen, both via intramuscular and subcutaneous injection to mice. Furthermore characterisation of the liposomal system in simulated in vivo conditions was undertaken. Our results show that this dual-labeling technique is functional and reproducible. The administration of Ag85B-ESAT-6 without a liposomal carrier leads to rapid dissemination of the antigen from the site of injection. The administration of Ag85B-ESAT-6 together with either DDA or DDA:TDB liposomes however leads to deposition of the antigen at the injection site with detectable levels still being present 14 days post injection. Neither the incorporation of TDB nor the route of injection had any significant influence on the depot effect of DDA-based liposomes. The presence of TDB in DDA liposomes improves draining of liposomes to the lymph node in addition to increasing monocyte influx to the site of injection as highlighted by the intensive blue colouring of the injection site after pontamine blue staining of phagocytic cells in vivo. Our findings provide conclusive evidence for a cationic liposome-mediated deposition of antigen at the injection site with improved monocyte infiltration.
Resumo:
Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Dry powders suitable for inhalation containing β-estradiol, leucine as a dispersibility enhancer and lactose as a bulking agent were prepared by spray-drying from aqueous ethanol formulations. The influence of formulation components on the characteristics of the resultant spray-dried powders was examined through the use of a range of ethanol concentrations (10-50% v/v) in the solvent used to prepare the initial formulations. Additionally, the amount of leucine required to act as a dispersibility enhancer was investigated by varying the amount of leucine added to the formulation prior to spray-drying. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction and tapped density measurements, and the aerosolisation performance determined using Twin Stage Impinger and Andersen Cascade Impactor analysis. We demonstrate that selection of appropriate solvent systems and leucine concentration allows the preparation of spray-dried powders that display enhanced aerosolisation properties, and would be predicted to exhibit high deposition in the lower regions of the respiratory tract. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
The adjuvant efficacy of cationic liposomes composed of dimethyldioctadecylammonium bromide and trehalose dibehenate (DDA:TDB) is well established. Whilst the mechanism behind its immunostimulatory action is not fully understood, the ability of the formulation to promote a 'depot effect' is a consideration. The depot effect has been suggested to be primarily due to their cationic nature which results in electrostatic adsorption of the antigen and aggregation of the vesicles at the site of injection. The aim of the study was to further test this hypothesis by investigating whether sterically stabilising DDA:TDB with polyethylene glycol (PEG) reduces aggregation, and subsequently influences the formation of a depot at the site of injection. Results reported demonstrate that high (25%) levels of PEG was able to significantly inhibit the formation of a liposome depot and also severely limit the retention of antigen at the site, resulting in a faster drainage of the liposomes from the site of injection. This change in biodistribution profile was reflected in the immunisation response, where lower levels of IgG2b antibody and IFN-? and higher level of IL-5 cytokine were found. Furthermore entrapping antigen within DDA:TDB liposomes did not improve antigen retention at the injection site compared surface adsorbed antigen. © 2011 Elsevier B.V. All rights reserved.
Resumo:
With respect to liposomes as delivery vehicles and adjuvants for vaccine antigens, the role of vesicle surface charge remains disputed. In the present study we investigate the influence of liposome surface charge and antigen-liposome interaction on the antigen depot effect at the site of injection (SOI). The presence of liposome and antigen in tissue at the SOI as well as the draining lymphatic tissue was quantified to analyse the lymphatic draining of the vaccine components. Furthermore investigations detailing cytokine production and T-cell antigen specificity were undertaken to investigate the relationship between depot effect and the ability of the vaccine to induce an immune response. Our results suggest that cationic charge is an important factor for the retention of the liposomal component at the SOI, and a moderate to high (>50%) level of antigen adsorption to the cationic vesicle surface was required for efficient antigen retention in the same tissue. Furthermore, neutral liposomes expressing poor levels of antigen retention were limited in their ability to mediate long term (14 days) antigen presentation to circulating antigen specific T-cells and to induce the Th1 and Th17 arms of the immune system, as compared to antigen adsorbing cationic liposomes. The neutral liposomes did however induce the production of IL-5 at levels comparable to those induced by cationic liposomes, indicating that neutral liposomes can induce a weak Th2 response.