14 resultados para Contour

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. It is well documented that myopia is associated with an increase in axial length or, more specifically, in vitreous chamber depth. Whether the transverse dimensions of the eye also increase in myopia is relevant to further understanding of its development. METHODS. The posterior retinal surface was localized in two-dimensional space in both eyes of young adult white and Taiwanese-Chinese iso- and anisomyopes (N = 56), from measured keratometry, A-scan ultrasonography, and central and peripheral refraction (±35°) data, with the aid of a computer modeling program designed for this purpose. Anisomyopes had 2 D or more interocular difference in their refractive errors, with mean values in their more myopic eyes of -5.57 D and in their less myopic eyes of -3.25 D, similar to the means of the two isomyopic groups. The derived retinal contours for the more and less myopic eyes were compared by way of investigating ocular shape changes that accompany myopia, in the posterior region of the vitreous chamber. The presence and size of optic disc crescents were also investigated as an index of retinal stretching in myopia. RESULTS. Relative to the less myopic eyes of anisometropic subjects, the more myopic eyes were more elongated and also distorted into a more prolate shape in both the white and Chinese groups. However, the Chinese eyes showed a greater and more uniform relative expansion of the posterior retinal surface in their more myopic eyes, and this was associated with larger optic disc crescents. The changes in the eyes of whites displayed a nasal-temporal axial asymmetry, reflecting greater enlargement of the nasal retinal sector. CONCLUSIONS. Myopia is associated with increased axial length and a prolate shape. This prolate shape is consistent with the proposed idea that axial and transverse dimensions of the eye are regulated differently. The observations that ocular shape changes are larger but more symmetrical in Chinese eyes than in eyes of whites warrant further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel intonation modelling approach and demonstrates its applicability using the Standard Yorùbá language. Our approach is motivated by the theory that abstract and realised forms of intonation and other dimensions of prosody should be modelled within a modular and unified framework. In our model, this framework is implemented using the Relational Tree (R-Tree) technique. The R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. Our R-Tree for an utterance is generated in two steps. First, the abstract structure of the waveform, called the Skeletal Tree (S-Tree), is generated using tone phonological rules for the target language. Second, the numerical values of the perceptually significant peaks and valleys on the S-Tree are computed using a fuzzy logic based model. The resulting points are then joined by applying interpolation techniques. The actual intonation contour is synthesised by Pitch Synchronous Overlap Technique (PSOLA) using the Praat software. We performed both quantitative and qualitative evaluations of our model. The preliminary results suggest that, although the model does not predict the numerical speech data as accurately as contemporary data-driven approaches, it produces synthetic speech with comparable intelligibility and naturalness. Furthermore, our model is easy to implement, interpret and adapt to other tone languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the role of formant transitions and F0-contour continuity in binding together speech sounds into a coherent stream. Listening to a repeating recorded word produces verbal transformations to different forms; stream segregation contributes to this effect and so it can be used to measure changes in perceptual coherence. In experiment 1, monosyllables with strong formant transitions between the initial consonant and following vowel were monotonized; each monosyllable was paired with a weak-transitions counterpart. Further stimuli were derived by replacing the consonant-vowel transitions with samples from adjacent steady portions. Each stimulus was concatenated into a 3-min-long sequence. Listeners only reported more forms in the transitions-removed condition for strong-transitions words, for which formant-frequency discontinuities were substantial. In experiment 2, the F0 contour of all-voiced monosyllables was shaped to follow a rising or falling pattern, spanning one octave. Consecutive tokens either had the same contour, giving an abrupt F0 change between each token, or alternated, giving a continuous contour. Discontinuous sequences caused more transformations and forms, and shorter times to the first transformation. Overall, these findings support the notion that continuity cues provided by formant transitions and the F0 contour play an important role in maintaining the perceptual coherence of speech.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the effects on speech intelligibility of across-formant differences in fundamental frequency (ΔF0) and F0 contour. Sentence-length speech analogues were presented dichotically (left=F1+F3; right=F2), either alone or—because competition usually reveals grouping cues most clearly—accompanied in the left ear by a competitor for F2 (F2C) that listeners must reject to optimize recognition. F2C was created by inverting the F2 frequency contour. In experiment 1, all left-ear formants shared the same constant F0 and ΔF0F2 was 0 or ±4 semitones. In experiment 2, all left-ear formants shared the natural F0 contour and that for F2 was natural, constant, exaggerated, or inverted. Adding F2C lowered keyword scores, presumably because of informational masking. The results for experiment 1 were complicated by effects associated with the direction of ΔF0F2; this problem was avoided in experiment 2 because all four F0 contours had the same geometric mean frequency. When the target formants were presented alone, scores were relatively high and did not depend on the F0F2 contour. F2C impact was greater when F2 had a different F0 contour from the other formants. This effect was a direct consequence of the associated ΔF0; the F0F2 contour per se did not influence competitor impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological approaches to perception have demonstrated that information encoding by the visual system is informed by the natural environment, both in terms of simple image attributes like luminance and contrast, and more complex relationships corresponding to Gestalt principles of perceptual organization. Here, we ask if this optimization biases perception of visual inputs that are perceptually bistable. Using the binocular rivalry paradigm, we designed stimuli that varied in either their spatiotemporal amplitude spectra or their phase spectra. We found that noise stimuli with “natural” amplitude spectra (i.e., amplitude content proportional to 1/f, where f is spatial or temporal frequency) dominate over those with any other systematic spectral slope, along both spatial and temporal dimensions. This could not be explained by perceived contrast measurements, and occurred even though all stimuli had equal energy. Calculating the effective contrast following attenuation by a model contrast sensitivity function suggested that the strong contrast dependency of rivalry provides the mechanism by which binocular vision is optimized for viewing natural images. We also compared rivalry between natural and phase-scrambled images and found a strong preference for natural phase spectra that could not be accounted for by observer biases in a control task. We propose that this phase specificity relates to contour information, and arises either from the activity of V1 complex cells, or from later visual areas, consistent with recent neuroimaging and single-cell work. Our findings demonstrate that human vision integrates information across space, time, and phase to select the input most likely to hold behavioral relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the corner elements used to form the Kanizsa triangle were rotated to negate the formation of illusory contours. The MEG data were analysed using synthetic aperture magnetometry (SAM) to enable the spatial localisation of task-related oscillatory power changes within specific frequency bands, and the time-course of activity within given locations-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. In contrast to earlier studies, we did not find increases in gamma activity (> 30 Hz) to illusory shapes, but instead a decrease in 10–30 Hz activity approximately 200 ms after stimulus presentation. The reduction in oscillatory activity was primarily evident within extrastriate areas, including the lateral occipital complex (LOC). Importantly, this same pattern of results was evident for each stimulus type. Our results further highlight the importance of the LOC and a network of posterior brain regions in processing visual contours, be they illusory or real in nature. The similarity of the results for both real and illusory contours, however, leads us to conclude that the broadband (< 30 Hz) decrease in power we observed is more likely to reflect general changes in visual attention than neural computations specific to processing visual contours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motion discontinuities can signal object boundaries where few or no other cues, such as luminance, colour, or texture, are available. Hence, motion-defined contours are an ecologically important counterpart to luminance contours. We developed a novel motion-defined Gabor stimulus to investigate the nature of neural operators analysing visual motion fields in order to draw parallels with known luminance operators. Luminance-defined Gabors have been successfully used to discern the spatial-extent and spatial-frequency specificity of possible visual contour detectors. We now extend these studies into the motion domain. We define a stimulus using limited-lifetime moving dots whose velocity is described over 2-D space by a Gabor pattern surrounded by randomly moving dots. Participants were asked to determine whether the orientation of the Gabor pattern (and hence of the motion contours) was vertical or horizontal in a 2AFC task, and the proportion of correct responses was recorded. We found that with practice participants became highly proficient at this task, able in certain cases to reach 90% accuracy with only 12 limited-lifetime dots. However, for both practised and novice participants we found that the ability to detect a single boundary saturates with the size of the Gaussian envelope of the Gabor at approximately 5 deg full-width at half-height. At this optimal size we then varied spatial frequency and found the optimum was at the lowest measured spatial frequency (0.1 cycle deg-1 ) and then steadily decreased with higher spatial frequencies, suggesting that motion contour detectors may be specifically tuned to a single, isolated edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been two main approaches to feature detection in human and computer vision - luminance-based and energy-based. Bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of elements in a 3-element contour-alignment task? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square wave and Fourier components in a given image have a common phase. Observers judged whether the centre element (eg ±458 phase) was to the left or right of the flanking pair (eg 0º phase). Lateral offset of the centre element was varied to find the point of subjective alignment from the fitted psychometric function. This point shifted systematically to the left or right according to the sign of the centre phase, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks and other derivative-based features, but not by energy peaks which (by design) predicted no shift at all. These results on contour alignment agree well with earlier ones from a more explicit feature-marking task, and strongly suggest that human vision does not use local energy peaks to locate basic first-order features. [Supported by the Wellcome Trust (ref: 056093)]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How speech is separated perceptually from other speech remains poorly understood. Recent research suggests that the ability of an extraneous formant to impair intelligibility depends on the modulation of its frequency, but not its amplitude, contour. This study further examined the effect of formant-frequency variation on intelligibility by manipulating the rate of formant-frequency change. Target sentences were synthetic three-formant (F1?+?F2?+?F3) analogues of natural utterances. Perceptual organization was probed by presenting stimuli dichotically (F1?+?F2C?+?F3C; F2?+?F3), where F2C?+?F3C constitute a competitor for F2 and F3 that listeners must reject to optimize recognition. Competitors were derived using formant-frequency contours extracted from extended passages spoken by the same talker and processed to alter the rate of formant-frequency variation, such that rate scale factors relative to the target sentences were 0, 0.25, 0.5, 1, 2, and 4 (0?=?constant frequencies). Competitor amplitude contours were either constant, or time-reversed and rate-adjusted in parallel with the frequency contour. Adding a competitor typically reduced intelligibility; this reduction increased with competitor rate until the rate was at least twice that of the target sentences. Similarity in the results for the two amplitude conditions confirmed that formant amplitude contours do not influence across-formant grouping. The findings indicate that competitor efficacy is not tuned to the rate of the target sentences; most probably, it depends primarily on the overall rate of frequency variation in the competitor formants. This suggests that, when segregating the speech of concurrent talkers, differences in speech rate may not be a significant cue for across-frequency grouping of formants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although reading ability has been related to the processing of simple pitch features such as isolated transitions or continuous modulation spoken language also contains complex patterns of pitch changes that are important for establishing stress location and for segmenting the speech stream. These aspects of spoken language processing depend critically on pitch pattern (global structure) rather than on absolute pitch values (local structure). Here we show that the detection of global structure, and not local structure, is predictive of performance on measures of phonological skill and reading ability, which supports a critical importance of pitch contour processing in the acquisition of literacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is devoted to the tribology at the head~to~tape interface of linear tape recording systems, OnStream ADRTM system being used as an experimental platform, Combining experimental characterisation with computer modelling, a comprehensive picture of the mechanisms involved in a tape recording system is drawn. The work is designed to isolate the mechanisms responsible for the physical spacing between head and tape with the aim of minimising spacing losses and errors and optimising signal output. Standard heads-used in ADR current products-and prototype heads- DLC and SPL coated and dummy heads built from a AI203-TiC and alternative single-phase ceramics intended to constitute the head tape-bearing surface-are tested in controlled environment for up to 500 hours (exceptionally 1000 hours), Evidences of wear on the standard head are mainly observable as a preferential wear of the TiC phase of the AI203-TiC ceramic, The TiC grains are believed to delaminate due to a fatigue wear mechanism, a hypothesis further confirmed via modelling, locating the maximum von Mises equivalent stress at a depth equivalent to the TiC recession (20 to 30 nm). Debris of TiC delaminated residues is moreover found trapped within the pole-tip recession, assumed therefore to provide three~body abrasive particles, thus increasing the pole-tip recession. Iron rich stain is found over the cycled standard head surface (preferentially over the pole-tip and to a lesser extent over the TiC grains) at any environment condition except high temperature/humidity, where mainly organic stain was apparent, Temperature (locally or globally) affects staining rate and aspect; stain transfer is generally promoted at high temperature. Humidity affects transfer rate and quantity; low humidity produces, thinner stains at higher rate. Stain generally targets preferentially head materials with high electrical conductivity, i.e. Permalloy and TiC. Stains are found to decrease the friction at the head-to-tape interface, delay the TiC recession hollow-out and act as a protective soft coating reducing the pole-tip recession. This is obviously at the expense of an additional spacing at the head-to-tape interface of the order of 20 nm. Two kinds of wear resistant coating are tested: diamond like carbon (DLC) and superprotective layer (SPL), 10 nm and 20 to 40 nm thick, respectively. DLC coating disappears within 100 hours due possibly to abrasive and fatigue wear. SPL coatings are generally more resistant, particularly at high temperature and low humidity, possibly in relation with stain transfer. 20 nm coatings are found to rely on the substrate wear behaviour whereas 40 nm coatings are found to rely on the adhesive strength at the coating/substrate interface. These observations seem to locate the wear-driving forces 40 nm below the surface, hence indicate that for coatings in the 10 nm thickness range-· i,e. compatible with high-density recording-the substrate resistance must be taken into account. Single-phase ceramic as candidate for wear-resistant tape-bearing surface are tested in form of full-contour dummy-heads. The absence of a second phase eliminates the preferential wear observed at the AI203-TiC surface; very low wear rates and no evidence of brittle fracture are observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gestalt grouping rules imply a process or mechanism for grouping together local features of an object into a perceptual whole. Several psychophysical experiments have been interpreted as evidence for constrained interactions between nearby spatial filter elements and this has led to the hypothesis that element linking might be mediated by these interactions. A common tacit assumption is that these interactions result in response modulation which disturbs a local contrast code. We addressed this possibility by performing contrast discrimination experiments using two-dimensional arrays of multiple Gabor patches arranged either (i) vertically, (ii) in circles (coherent conditions), or (iii) randomly (incoherent condition), as well as for a single Gabor patch. In each condition, contrast increments were applied to either the entire test stimulus (experiment 1) or a single patch whose position was cued (experiment 2). In experiment 3, the texture stimuli were reduced to a single contour by displaying only the central vertical strip. Performance was better for the multiple-patch conditions than for the single-patch condition, but whether the multiple-patch stimulus was coherent or not had no systematic effect on the results in any of the experiments. We conclude that constrained local interactions do not interfere with a local contrast code for our suprathreshold stimuli, suggesting that, in general, this is not the way in which element linking is achieved. The possibility that interactions are involved in enhancing the detectability of contour elements at threshold remains unchallenged by our experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Noise-vocoded (NV) speech is often regarded as conveying phonetic information primarily through temporal-envelope cues rather than spectral cues. However, listeners may infer the formant frequencies in the vocal-tract output—a key source of phonetic detail—from across-band differences in amplitude when speech is processed through a small number of channels. The potential utility of this spectral information was assessed for NV speech created by filtering sentences into six frequency bands, and using the amplitude envelope of each band (=30 Hz) to modulate a matched noise-band carrier (N). Bands were paired, corresponding to F1 (˜N1 + N2), F2 (˜N3 + N4) and the higher formants (F3' ˜ N5 + N6), such that the frequency contour of each formant was implied by variations in relative amplitude between bands within the corresponding pair. Three-formant analogues (F0 = 150 Hz) of the NV stimuli were synthesized using frame-by-frame reconstruction of the frequency and amplitude of each formant. These analogues were less intelligible than the NV stimuli or analogues created using contours extracted from spectrograms of the original sentences, but more intelligible than when the frequency contours were replaced with constant (mean) values. Across-band comparisons of amplitude envelopes in NV speech can provide phonetically important information about the frequency contours of the underlying formants.