4 resultados para Contextual Classification

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aims of the project were twofold: 1) To investigate classification procedures for remotely sensed digital data, in order to develop modifications to existing algorithms and propose novel classification procedures; and 2) To investigate and develop algorithms for contextual enhancement of classified imagery in order to increase classification accuracy. The following classifiers were examined: box, decision tree, minimum distance, maximum likelihood. In addition to these the following algorithms were developed during the course of the research: deviant distance, look up table and an automated decision tree classifier using expert systems technology. Clustering techniques for unsupervised classification were also investigated. Contextual enhancements investigated were: mode filters, small area replacement and Wharton's CONAN algorithm. Additionally methods for noise and edge based declassification and contextual reclassification, non-probabilitic relaxation and relaxation based on Markov chain theory were developed. The advantages of per-field classifiers and Geographical Information Systems were investigated. The conclusions presented suggest suitable combinations of classifier and contextual enhancement, given user accuracy requirements and time constraints. These were then tested for validity using a different data set. A brief examination of the utility of the recommended contextual algorithms for reducing the effects of data noise was also carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tonal, textural and contextual properties are used in manual photointerpretation of remotely sensed data. This study has used these three attributes to produce a lithological map of semi arid northwest Argentina by semi automatic computer classification procedures of remotely sensed data. Three different types of satellite data were investigated, these were LANDSAT MSS, TM and SIR-A imagery. Supervised classification procedures using tonal features only produced poor classification results. LANDSAT MSS produced classification accuracies in the range of 40 to 60%, while accuracies of 50 to 70% were achieved using LANDSAT TM data. The addition of SIR-A data produced increases in the classification accuracy. The increased classification accuracy of TM over the MSS is because of the better discrimination of geological materials afforded by the middle infra red bands of the TM sensor. The maximum likelihood classifier consistently produced classification accuracies 10 to 15% higher than either the minimum distance to means or decision tree classifier, this improved accuracy was obtained at the cost of greatly increased processing time. A new type of classifier the spectral shape classifier, which is computationally as fast as a minimum distance to means classifier is described. However, the results for this classifier were disappointing, being lower in most cases than the minimum distance or decision tree procedures. The classification results using only tonal features were felt to be unacceptably poor, therefore textural attributes were investigated. Texture is an important attribute used by photogeologists to discriminate lithology. In the case of TM data, texture measures were found to increase the classification accuracy by up to 15%. However, in the case of the LANDSAT MSS data the use of texture measures did not provide any significant increase in the accuracy of classification. For TM data, it was found that second order texture, especially the SGLDM based measures, produced highest classification accuracy. Contextual post processing was found to increase classification accuracy and improve the visual appearance of classified output by removing isolated misclassified pixels which tend to clutter classified images. Simple contextual features, such as mode filters were found to out perform more complex features such as gravitational filter or minimal area replacement methods. Generally the larger the size of the filter, the greater the increase in the accuracy. Production rules were used to build a knowledge based system which used tonal and textural features to identify sedimentary lithologies in each of the two test sites. The knowledge based system was able to identify six out of ten lithologies correctly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.