40 resultados para Context data
em Aston University Research Archive
Resumo:
A word may have many potential meanings, but its actual meaning in any authentic written or spoken text is determined by its context: its collocations, structural patterns, and pragmatic functions. Large language corpora offer access to words in a wide range of natural contexts, which can improve and enrich both language learning and teaching.
Resumo:
At the moment, the phrases “big data” and “analytics” are often being used as if they were magic incantations that will solve all an organization’s problems at a stroke. The reality is that data on its own, even with the application of analytics, will not solve any problems. The resources that analytics and big data can consume represent a significant strategic risk if applied ineffectively. Any analysis of data needs to be guided, and to lead to action. So while analytics may lead to knowledge and intelligence (in the military sense of that term), it also needs the input of knowledge and intelligence (in the human sense of that term). And somebody then has to do something new or different as a result of the new insights, or it won’t have been done to any purpose. Using an analytics example concerning accounts payable in the public sector in Canada, this paper reviews thinking from the domains of analytics, risk management and knowledge management, to show some of the pitfalls, and to present a holistic picture of how knowledge management might help tackle the challenges of big data and analytics.
Resumo:
This paper describes part of the corpus collection efforts underway in the EC funded Companions project. The Companions project is collecting substantial quantities of dialogue a large part of which focus on reminiscing about photographs. The texts are in English and Czech. We describe the context and objectives for which this dialogue corpus is being collected, the methodology being used and make observations on the resulting data. The corpora will be made available to the wider research community through the Companions Project web site.
Resumo:
This paper surveys the context of feature extraction by neural network approaches, and compares and contrasts their behaviour as prospective data visualisation tools in a real world problem. We also introduce and discuss a hybrid approach which allows us to control the degree of discriminatory and topographic information in the extracted feature space.
Resumo:
The point of departure for this study was a recognition of the differences in suppliers' and acquirers' judgements of the value of technology when transferred between the two, and the significant impacts of technology valuation on the establishment of technology partnerships and effectiveness of technology collaborations. The perceptions, transfer strategies and objectives, perceived benefits and assessed technology contributions as well as associated costs and risks of both suppliers and acquirers were seen to be the core to these differences. This study hypothesised that the capability embodied in technology to yield future returns makes technology valuation distinct from the process of valuing manufacturing products. The study hence has gone beyond the dimensions of cost calculation and price determination that have been discussed in the existing literature, by taking a broader view of how to achieve and share future added value from transferred technology. The core of technology valuation was argued as the evaluation of the 'quality' of the capability (technology) in generating future value and the effectiveness of the transfer arrangement for best use of such a capability. A dynamic approach comprising future value generation and realisation within the context of specific forms of collaboration was therefore adopted. The research investigations focused on the UK and China machine tool industries, where there are many technology transfer activities and the value issue has already been recognised in practice. Data were gathered from three groups: machine tool manufacturing technology suppliers in the UK and acquirers in China, and machine tool users in China. Data collecting methods included questionnaire surveys and case studies within all the three groups. The study has focused on identifying and examining the major factors affecting value as well as their interactive effects on technology valuation from both the supplier's and acquirer's point of view. The survey results showed the perceptions and the assessments of the owner's value and transfer value from the supplier's and acquirer's point of view respectively. Benefits, costs and risks related to the technology transfer were the major factors affecting the value of technology. The impacts of transfer payment on the value of technology by the sharing of financial benefits, costs and risks between partners were assessed. The close relationship between technology valuation and transfer arrangements was established by which technical requirements and strategic implications were considered. The case studies reflected the research propositions and revealed that benefits, costs and risks in the financial, technical and strategic dimensions interacted in the process of technology valuation within the context of technology collaboration. Further to the assessment of factors affecting value, a technology valuation framework was developed which suggests that technology attributes for the enhancement of contributory factors and their contributions to the realisation of transfer objectives need to be measured and compared with the associated costs and risks. The study concluded that technology valuation is a dynamic process including the generation and sharing of future value and the interactions between financial, technical and strategic achievements.
Resumo:
This study examines organizational antecedents of LMX and the mediating influence of empowerment on the relationships between LMX and the work outcomes of job satisfaction, task performance and psychological withdrawal behavior. Data were obtained from employees of a listed Chinese company in Guangdong Province, People's Republic of China. The results revealed that: (a) supervisor control of rewards and work unit climate were related to LMX and (b) empowerment fully mediated the relationship between LMX and the work outcomes as hypothesized.
Resumo:
Service encounter quality is an area of growing interest to researchers and managers alike, yet little is known about the effects of face-to-face service encounter quality within a business-to-business setting. In this paper, a psychometrically sound measure of such service encounter quality is proposed, and consequences of this construct are empirically assessed. Both a literature review and a dyadic in-depth interview approach were used to develop a conceptual framework and a pool of items to capture service encounter quality. A mail survey of customers was undertaken, and a response rate of 36% was obtained. Data analysis was conducted via confirmatory factor analysis and structural equation modeling. Findings reveal a four-factor structure of service encounter quality, encompassing professionalism, civility, friendliness and competence dimensions. Service encounter quality was found to be directly related to customer satisfaction and service quality perceptions, and indirectly to loyalty. The importance of these findings for practitioners and for future research on service encounter quality is discussed.
Resumo:
Data envelopment analysis defines the relative efficiency of a decision making unit (DMU) as the ratio of the sum of its weighted outputs to the sum of its weighted inputs allowing the DMUs to freely allocate weights to their inputs/outputs. However, this measure may not reflect a DMU's true efficiency as some inputs/outputs may not contribute reasonably to the efficiency measure. Traditionally, to overcome this problem weights restrictions have been imposed. This paper offers a new approach to this problem where DMUs operate a constant returns to scale technology in a single input multi-output context. The approach is based on introducing unobserved DMUs, created by adjusting the output levels of certain observed relatively efficient DMUs, reflecting a combination of technical information of feasible production levels and the DM's value judgments. Its main advantage is that the information conveyed by the DM is local, with reference to a specific observed DMU. The approach is illustrated on a real life application. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Few works address methodological issues of how to conduct strategy-as-practice research and even fewer focus on how to analyse the subsequent data in ways that illuminate strategy as an everyday, social practice. We address this gap by proposing a quantitative method for analysing observational data, which can complement more traditional qualitative methodologies. We propose that rigorous but context-sensitive coding of transcripts can render everyday practice analysable statistically. Such statistical analysis provides a means for analytically representing patterns and shifts within the mundane, repetitive elements through which practice is accomplished. We call this approach the Event Database (EDB) and it consists of five basic coding categories that help us capture the stream of practice. Indexing codes help to index or categorise the data, in order to give context and offer some basic information about the event under discussion. Indexing codes are descriptive codes, which allow us to catalogue and classify events according to their assigned characteristics. Content codes are to do with the qualitative nature of the event; this is the essence of the event. It is a description that helps to inform judgements about the phenomenon. Nature codes help us distinguish between discursive and tangible events. We include this code to acknowledge that some events differ qualitatively from other events. Type events are codes abstracted from the data in order to help us classify events based on their description or nature. This involves significantly more judgement than the index codes but consequently is also more meaningful. Dynamics codes help us capture some of the movement or fluidity of events. This category has been included to let us capture the flow of activity over time.
Resumo:
Overlaying maps using a desktop GIS is often the first step of a multivariate spatial analysis. The potential of this operation has increased considerably as data sources an dWeb services to manipulate them are becoming widely available via the Internet. Standards from the OGC enable such geospatial ‘mashups’ to be seamless and user driven, involving discovery of thematic data. The user is naturally inclined to look for spatial clusters and ‘correlation’ of outcomes. Using classical cluster detection scan methods to identify multivariate associations can be problematic in this context, because of a lack of control on or knowledge about background populations. For public health and epidemiological mapping, this limiting factor can be critical but often the focus is on spatial identification of risk factors associated with health or clinical status. In this article we point out that this association itself can ensure some control on underlying populations, and develop an exploratory scan statistic framework for multivariate associations. Inference using statistical map methodologies can be used to test the clustered associations. The approach is illustrated with a hypothetical data example and an epidemiological study on community MRSA. Scenarios of potential use for online mashups are introduced but full implementation is left for further research.
The role of context and timeframe in moderating relationships within the theory of planned behaviour
Resumo:
This study examined the moderating effect of context and timeframe on the predictive ability of Theory of Planned Behaviour (TPB) constructs. Three hundred and eighty-three students completed TPB measures either in a campus bar or a library and were randomly allocated to one of three timeframe conditions: tonight, tomorrow or next week. There was a threeway interaction such that the subjective norms of participants in a bar were more predictive of their intentions to binge drink that night, whereas thesubjective norms of participants in a library were less predictive of intentions to binge drink that night. This research provides empirical evidence that ignoring context may result in underestimation of the importance of normative factors in binge drinking. It also suggests that other research utilising the TPB needs to take greater account of the impact of context of data collection, which has been neglected to date.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
The thesis reports of a study into the effect upon organisations of co-operative information systems (CIS) incorporating flexible communications, group support and group working technologies. A review of the literature leads to the development of a model of effect based upon co-operative business tasks. CIS have the potential to change how co-operative business tasks are carried out and their principal effect (or performance) may therefore be evaluated by determining to what extent they are being employed to perform these tasks. A significant feature of CIS use identified is the extent to which they may be designed to fulfil particular tasks, or by contrast, may be applied creatively by users in an emergent fashion to perform tasks. A research instrument is developed using a survey questionnaire to elicit users judgements of the extent to which a CIS is employed to fulfil a range of co-operative tasks. This research instrument is applied to a longitudinal study of Novell GroupWise introduction at Northamptonshire County Council during which qualitative as well as quantitative data were gathered. A method of analysis of questionnaire results using principles from fuzzy mathematics and artificial intelligence is developed and demonstrated. Conclusions from the longitudinal study include the importance of early experiences in setting patterns for use for CIS, the persistence of patterns of use over time and the dominance of designed usage of the technology over emergent use.