15 resultados para Contact thermal resistance

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melamine orthophosphate has been shown to exhibit variations in its chemical constitution, and crystal shape and size, dependent upon the method of production. These crystal types have been incorporated with epoxy resin to produce intumescent coatings, which have been tested on a small scale fire testing device, designed and calibrated within this project. The factors influencing performance in three fire test regimes are the percentage loading of melamine phosphate, its chemical constitution, crystal size and shape, thermal degradation, and state of agglomeration . and dispersion in the coating, determined by the method of incorporation into the coating. When melamine phosphate is heat treated at 210ºC, a process designed to reduce its solubility, the performance of coatings produced with such material is profoundly affected, depending mainly on crystal size and shape alone. Consideration of heat transfer across the chars produced has allowed a quantitative evaluation of the thermal resistance of chars throughout a test. An optimum production route for melamine phosphate has been suggested, taking into account the requirements for weatherability of coatings as well as performance in a fire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is some evidence to suggest that nitriding of alloy steels, in particular high speed tool steels, under carefully controlled conditions might sharply increase rolling contact fatigue resistance. However, the subsurface shear stresses developed in aerospace bearing applications tend to occur at depths greater than the usual case depths currently produced by nitriding. Additionally, case development must be limited with certain materials due to case spalling and may not always be sufficient to achieve the current theoretical depths necessary to ensure that peak stresses occur within the case. It was the aim of' this work to establish suitable to overcome this problem by plasma nitriding. To assist this development a study has been made of prior hardening treatment, case development, residual stress and case cracking tendency. M2 in the underhardened, undertempered and fully hardened and tempered conditions all responded similarly to plasma nitriding - maximum surface hardening being achieved by plasma nitriding at 450°C. Case development varied linearly with increasing treatment temperature and also with the square root of the treatment time. Maximum surface hardness of M5O and Tl steels was achieved by plasma nitriding in 15% nitrogen/85% hydrogen and varied logarithmically with atmosphere nitrogen content. The case-cracking contact stress varied linearly with nitriding temperature for M2. Tl and M5O supported higher stresses after nitriding in low nitrogen plasma atmospheres. Unidirectional bending fatigue of M2 has been improved up to three times the strength of the fully hardened and tempered condition by plasma nitriding for 16hrs at 400°C. Fatigue strengths of Tl and M5O have been improved by up to 30% by plasma nitriding for 16hrs at 450°C in a 75% hydrogen/25% nitrogen atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of stainless steel, glass, zirconium and titanium enamel surfaces on the thermal and photooxidative toughening mechanism of dehydrated castor oil films deposited on these surfaces was investigated using different analytical and spectroscopic methods. The conjugated and non-conjugated double bonds were identified and quantified using both Raman spectroscopy and 1D and 2D NMR spectroscopy. The disappearance of the double bonds in thermally oxidised oil-on-surface films was shown to be concomitant with the formation of hydroperoxides (determined by iodometric titration). The type of the surface had a major effect on the rate of thermal oxidation of the oil, but all of the surfaces examined had resulted in a significantly higher rate of oxidation compared to that of the neat oil. The highest effect was exhibited by the stainless steel surface followed by zirconium enamel, titanium enamel and glass. The rate of thermal oxidation of the oil-on-steel surface (at 100 °C, based on peroxide values) was more than five times faster than that of oil-on-glass and more than 21 times faster than the neat oil when compared under similar thermal oxidative conditions. The rate of photooxidation at 60 °C of oil-on-steel films was found to be about one and half times faster than their rate of thermal oxidation at the same temperature. Results from absorbance reflectance infrared microscopy with line scans taken across the depth of thermally oxidised oil-on-steel films suggest that the thermal oxidative toughening mechanism of the oil occurs by two different reaction pathways with the film outermost layers, i.e. furthest away from the steel surface, oxidising through a traditional free radical oxidation process involving the formation of various oxygenated products formed from the decomposition of allylic hydroperoxides, whereas, in the deeper layers closer to the steel surface, crosslinking reactions predominate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproducible preparation of a number of modified clay and clay~like materials by both conventional and microwave-assisted chemistry, and their subsequent characterisation, has been achieved, These materials are designed as hydrocracking catalysts for the upgrading of liquids obtained by the processing of coal. Contact with both coal derived liquids and heavy petroleum resids has demonstrated that these catalysts are superior to established proprietary catalysts in terms of both initial activity and deactivation resistance, Of particular activity were a chromium-pillared montmorillonite and a tin intercalated laponite, Layered Double Hydroxides (LDH's) have exhibited encouraging thermal stability. Development of novel methods for hydrocracking coal derived liquids, using a commercial microwave oven, modified reaction vessels and coal model compounds has been attempted. Whilst safe and reliable operation of a high pressure microwave "bomb" apparatus employing hydrogen, has been achieved, no hydrotreatment reactions occurred,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental study of the abrasion resistance of concrete at both the macro and micro levels. This is preceded by a review related to friction and wear, methods of test for assessing abrasion resistance, and factors influencing the abrasion resistance of concrete. A versatile test apparatus was developed to assess the abrasion resistance of concrete. This could be operated in three modes and a standardised procedure was established for all tests. A laboratory programme was undertaken to investigate the influence, on abrasion resistance, of three major factors - finishing techniques, curing regimes and surface treatments. The results clearly show that abrasion resistance was significantly affected by these factors, and tentative mechanisms were postulated to explain these observations. To substantiate these mechanisms, the concrete specimens from the macro-study were subjected to micro-structural investigation, using such techniques as 'Mercury Intrusion Forosimetry, Microhardness, Scanning Electron Microscopy, Petrography and Differential Thermal Analysis. The results of this programme clearly demonstrated that the abrasion resistance of concrete is primarily dependent on the microstructure of the concrete nearest to the surface. The viability of indirectly assessing the abrasion resistance was investigated using three non-destructive techniques - Ultrasonic Pulse Velocity, Schmidt Rebound Hardness, and the Initial Surface Absorption Test. The Initial Surface Absorption was found to be most sensitive to factors which were shown to have influenced the abrasion resistance of concrete. An extensive field investigation was also undertaken. The results were used to compare site and laboratorypractices, and the performance in the accelerated abrasion test with the service wear. From this study, criteria were developed for assessing the quality of concrete floor slabs in terms of abrasion resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal decomposition behavior of 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) widely used as flame retardant plastics additive was studied by HRTG and differential scanning calorimetries. It was pyrolysed in inert atmosphere at 240 and 340 °C in isothermal conditions, the decomposition products were collected and investigated by means of IR and GC-MS, most of them are identified. It was found that BTBPE mostly evaporates at 240 °C. The decomposition products at 340°C depend on rate of their removal from the hot reaction zone. Main primary decomposition products found in case of rapid removal are tribromophenol and vinyl tribromophenyl ether. Whereas, prolonged contact with heating zone also produces hydrogen bromide, ethylene bromide, polybrominated vinyl phenyl ethers and diphenyl ethers, and dibenzodioxins. The nature of the identified compounds are in accordance with a molecular and radical pyrolysis reaction pathway. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To determine the dynamic emitted temperature changes of the anterior eye during and immediately after wearing different materials and modalities of soft contact lenses. Method: A dynamic, non-contact infrared camera (Thermo-Tracer TH7102MX, NEC San-ei) was used to record the ocular surface temperature (OST) in 48 subjects (mean age 21.7 ± 1.9 years) wearing: lotrafilcon-A contact lenses on a daily wear (LDW; n = 8) or continuous wear (LCW; n = 8) basis; balafilcon-A contact lenses on a daily wear (BDW; n = 8) or continuous wear (BCW; n = 8) basis; etafilcon-A contact lenses on a daily disposable regimen (EDW; n = 8); and no lenses (controls; n = 8). OST was measured continuously five times, for 8 s after a blink, following a minimum of 2 h wear and immediately following lens removal. Absolute temperature, changes in temperature post-blink and the dynamics of temperature changes were calculated. Results: OST immediately following contact lens wear was significantly greater compared to non-lens wearers (37.1 ± 1.7 °C versus 35.0 ± 1.1 °C; p < 0.005), predominantly in the LCW group (38.6 ± 1.0 °C; p < 0.0001). Lens surface temperature was highly correlated (r = 0.97) to, but lower than OST (by -0.62 ± 0.3 °C). There was no difference with modality of wear (DW 37.5 ± 1.6 °C versus CW 37.8 ± 1.9 °C; p = 0.63), but significant differences were found between etafilcon A and silicone hydrogel lens materials (35.3 ± 1.1 °C versus 37.5 ± 1.5 °C; p < 0.0005). Ocular surface cooling following a blink was not significantly affected by contact lens wear with (p = 0.07) or without (p = 0.47) lenses in situ. Conclusions: Ocular surface temperature is greater with hydrogel and greater still with silicone hydrogel contact lenses in situ, regardless of modality of wear. The effect is likely to be due to the thermal transmission properties of a contact lens. © 2004 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal effects in uncontrolled factory environments are often the largest source of uncertainty in large volume dimensional metrology. As the standard temperature for metrology of 20°C cannot be achieved practically or economically in many manufacturing facilities, the characterisation and modelling of temperature offers a solution for improving the uncertainty of dimensional measurement and quantifying thermal variability in large assemblies. Technologies that currently exist for temperature measurement in the range of 0-50°C have been presented alongside discussion of these temperature measurement technologies' usefulness for monitoring temperatures in a manufacturing context. Particular aspects of production where the technology could play a role are highlighted as well as practical considerations for deployment. Contact sensors such as platinum resistance thermometers can produce accuracy closest to the desired accuracy given the most challenging measurement conditions calculated to be ∼0.02°C. Non-contact solutions would be most practical in the light controlled factory (LCF) and semi-invasive appear least useful but all technologies can play some role during the initial development of thermal variability models.