6 resultados para Contact mechanics
em Aston University Research Archive
Resumo:
Particulate solids are complex redundant systems which consist of discrete particles. The interactions between the particles are complex and have been the subject of many theoretical and experimental investigations. Invetigations of particulate material have been restricted by the lack of quantitative information on the mechanisms occurring within an assembly. Laboratory experimentation is limited as information on the internal behaviour can only be inferred from measurements on the assembly boundary, or the use of intrusive measuring devices. In addition comparisons between test data are uncertain due to the difficulty in reproducing exact replicas of physical systems. Nevertheless, theoretical and technological advances require more detailed material information. However, numerical simulation affords access to information on every particle and hence the micro-mechanical behaviour within an assembly, and can replicate desired systems. To use a computer program to numerically simulate material behaviour accurately it is necessary to incorporte realistic interaction laws. This research programme used the finite difference simulation program `BALL', developed by Cundall (1971), which employed linear spring force-displacement laws. It was thus necessary to incorporate more realistic interaction laws. Therefore, this research programme was primarily concerned with the implementation of the normal force-displacement law of Hertz (1882) and the tangential force-displacement laws of Mindlin and Deresiewicz (1953). Within this thesis the contact mechanics theories employed in the program are developed and the adaptations which were necessary to incorporate these laws are detailed. Verification of the new contact force-displacement laws was achieved by simulating a quasi-static oblique contact and single particle oblique impact. Applications of the program to the simulation of large assemblies of particles is given, and the problems in undertaking quasi-static shear tests along with the results from two successful shear tests are described.
Resumo:
This thesis reports a detailed investigation of the micromechanics of agglomerate behaviour under free-fall impact, double (punch) impact and diametrical compression tests using the simulation software TRUBAL. The software is based on the discrete element method (DEM) which incorporates the Newtonian equations of motion and contact mechanics theory to model the interparticle interactions. Four agglomerates have been used: three dense (differing in interface energy and contact density) and one loose. Although the simulated agglomerates are relatively coarse-grained, the results obtained are in good agreement with laboratory test results reported in the literature. The computer simulation results show that, in all three types of test, the loose agglomerate cannot fracture as it is unable to store sufficient elastic energy. Instead, it becomes flattened for low loading-rates and shattered or crushed at higher loading-rates. In impact tests, the dense agglomerates experience only local damage at low impact velocities. Semi-brittle fracture and fragmentation are produced over a range of higher impact velocities and at very high impact velocities shattering occurs. The dense agglomerates fracture in two or three large fragments in the diametrical compression tests. Local damage at the agglomerate-platen interface always occurs prior to fracture and consists of local bond breakage (microcrack formation) and local dislocations (compaction). The fracture process is dynamic and much more complex than that suggested by continuum fracture mechanics theory. Cracks are always initiated from the contact zones and propagate towards the agglomerate centre. Fracture occurs a short time after the start of unloading when a fracture crack "selection" process takes place. The detailed investigation of the agglomerate damage processes includes an examination of the evolution of the fracture surface. Detailed comparisons of the behaviour of the same agglomerate in all three types of test are presented. The particle size distribution curves of the debris are also examined, for both free-fall and double impact tests.
Resumo:
In the processing industries particulate materials are often in the form of powders which themselves are agglomerations of much smaller sized particles. During powder processing operations agglomerate degradation occurs primarily as a result of collisions between agglomerates and between agglomerates and the process equipment. Due to the small size of the agglomerates and the very short duration of the collisions it is currently not possible to obtain sufficiently detailed quantitative information from real experiments to provide a sound theoretically based strategy for designing particles to prevent or guarantee breakage. However, with the aid of computer simulated experiments, the micro-examination of these short duration dynamic events is made possible. This thesis presents the results of computer simulated experiments on a 2D monodisperse agglomerate in which the algorithms used to model the particle-particle interactions have been derived from contact mechanics theories and, necessarily, incorporate contact adhesion. A detailed description of the theoretical background is included in the thesis. The results of the agglomerate impact simulations show three types of behaviour depending on whether the initial impact velocity is high, moderate or low. It is demonstrated that high velocity impacts produce extensive plastic deformation which leads to subsequent shattering of the agglomerate. At moderate impact velocities semi-brittle fracture is observed and there is a threshold velocity below which the agglomerate bounces off the wall with little or no visible damage. The micromechanical processes controlling these different types of behaviour are discussed and illustrated by computer graphics. Further work is reported to demonstrate the effect of impact velocity and bond strength on the damage produced. Empirical relationships between impact velocity, bond strength and damage are presented and their relevance to attrition and comminution is discussed. The particle size distribution curves resulting from the agglomerate impacts are also provided. Computer simulated diametrical compression tests on the same agglomerate have also been carried out. Simulations were performed for different platen velocities and different bond strengths. The results show that high platen velocities produce extensive plastic deformation and crushing. Low platen velocities produce semi-brittle failure in which cracks propagate from the platens inwards towards the centre of the agglomerate. The results are compared with the results of the agglomerate impact tests in terms of work input, applied velocity and damage produced.
Resumo:
This research initiates a study of the mechanics of four roll plate bending and provides a methodology to investigate the process experimentally. To carry out the research a suitable model bender was designed and constructed. The model bender was comprehensively instrumented with ten load cells, three torquemeters and a tachometer. A rudimentary analysis of the four roll pre-bending mode considered the three critical bending operations. The analysis also gave an assessment of the model bender capacity for the design stage. The analysis indicated that an increase in the coefficient of friction in the contact region of the pinch rolls and the plate would reduce the pinch resultant force required to end a plate to a particular bend radius. The mechanisms involved in the four roll plate bending process were investigated and a mathematical model evolved to determine the mechanics of four roll thin plate bending. A theoretical and experimental investigation was conducted for the bending of HP30 aluminium plates in both single and multipass bending modes. The study indicated that the multipass plate bending mechanics of the process varied according to the number of bending passes executed and the step decrement of the anticipated finished bend radius in any two successive passes (i.e. the bending route). Experimental results for single pass bending indicated that the rollers normally exert a higher bending load for the steady-continous bending with the pre-inactive side roll oper?tive. For the pre-bending mode and the steady-continous bending mode with the pre-active side roll operative, the former exerted the higher loads. The single pass results also indicated that the force on the side roll, the torque and power steadily increased as the anticipated bend radius decreased. Theoretical predictions for the plate internal resistance to accomplish finished bend radii of between 2500mm and 500mm for multipass bending HP30 aluminium plates, suggested that there was a certain bending route which would effectively optimise the bender capacity.
Resumo:
This investigation examined the process of the longitudinal rolling of tubes through a set of three driven grooved rolls. Tubes were rolled with or without internal support i.e. under mandrel rolling or sinking conditions. Knowledge was required of the way in which the roll separating force and rolling torque vary for different conditions of rolling. The objective of this work being to obtain a better understanding and optimization of the mechanics of the process. The design and instrumentation of a complete experimental three-roll mill for the rolling of lead tube as an analogue material for hot steel, with the measurement of the individual roll force and torque is described. A novel type of roll load cell was incorporated and its design and testing discussed. Employing three roll sizes of 170 mm, 255 mm and 340 mm shroud diameter, precise tube specimens of various tube diameter to thickness ratios were rolled under sinking and mandrel rolling conditions. To obtain an indication of the tube-roll contact areas some of the specimens were partially rolled. For comparative purposes the remaining tubes were completely rolled as a single pass. The roll forces, torques and tube parameters e.g. reduction of area, D/t ratio, were collated and compared for each of the three roll diameters considered. The influence of friction, particularly in the mandrel rolling process, was commented upon. Theoretical studies utilising the equilibrium and energy methods were applied to both the sinking and mandrel rolling processes. In general, the energy approach gave better comparison with experiment, especially for mandrel rolling. The influence of the tube deformation zones on the two processes was observed and on the subsequent modification of the tube-roll arc contact length. A rudimentary attempt was made in the theoretical sinking analysis to allow for the deformation zone prior to roll contact; some success was noted. A general survey of the available tube rolling literature, for both the sinking and mandrel processes has been carried out.
Resumo:
The development of more realistic constitutive models for granular media, such as sand, requires ingredients which take into account the internal micro-mechanical response to deformation. Unfortunately, at present, very little is known about these mechanisms and therefore it is instructive to find out more about the internal nature of granular samples by conducting suitable tests. In contrast to physical testing the method of investigation used in this study employs the Distinct Element Method. This is a computer based, iterative, time-dependent technique that allows the deformation of granular assemblies to be numerically simulated. By making assumptions regarding contact stiffnesses each individual contact force can be measured and by resolution particle centroid forces can be calculated. Then by dividing particle forces by their respective mass, particle centroid velocities and displacements are obtained by numerical integration. The Distinct Element Method is incorporated into a computer program 'Ball'. This program is effectively a numerical apparatus which forms a logical housing for this method and allows data input and output, and also provides testing control. By using this numerical apparatus tests have been carried out on disc assemblies and many new interesting observations regarding the micromechanical behaviour are revealed. In order to relate the observed microscopic mechanisms of deformation to the flow of the granular system two separate approaches have been used. Firstly a constitutive model has been developed which describes the yield function, flow rule and translation rule for regular assemblies of spheres and discs when subjected to coaxial deformation. Secondly statistical analyses have been carried out using data which was extracted from the simulation tests. These analyses define and quantify granular structure and then show how the force and velocity distributions use the structure to produce the corresponding stress and strain-rate tensors.