4 resultados para Constable, Olivia Remie
em Aston University Research Archive
Resumo:
Case law report - online
Resumo:
Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223–233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.
Resumo:
Background/aims The MPS 9000 uses a psychophysical technique known as heterochromatic flicker photometry to measure macular pigment optical density (MPOD). Our aim was to determine the measurement variability (noise) of the MPS 9000. Methods Forty normally sighted participants who ranged in age from 18 to 50 years (25.4±8.2 years) were recruited from staff and students of Aston University (Birmingham, UK). Data were collected by two operators in two sessions separated by 1 week in order to assess test repeatability and reproducibility. Results The overall mean MPOD for the cohort was 0.35±0.14. There was no significant negative correlation between MPS 9000 MPOD readings and age (r=-0.192, p=0.236). Coefficients were 0.33 and 0.28 for repeatability, and 0.25 and 0.26 for reproducibility. There was no significant correlation between mean and difference MPOD values for any of the four pairs of results. Conclusions When MPOD is being monitored over time then any change less than 0.33 units should not be considered clinically significant as it is very likely to be due to measurement noise. The size of the coefficient appears to be positively correlated with MPOD.
Resumo:
Purpose: To determine the critical fitting characteristics of modern soft contact lens fits and from this to devise a simplified recording scheme. Methods: Ten subjects (aged 28.1 ± 7.4 years) wore eight different modern soft contact lenses. Video was captured and analysed of blink (central and up-gaze), excursion lag (up, down, right and left gaze) and push-up movement, centration and coverage. Results: Lens centration was on average close to the corneal centre. Movement on blink was significantly smaller in up-gaze than in primary-gaze (p<0.001). Lag was greatest in down-gaze and least in up-gaze (p<0.001). Push-up test recovery speed was 1.32±0.73mm/s. Overall lens movement was determined best by assessing horizontal lag, movement on blink in up-gaze and push-up recovery speed. Steeper lens base-curves did not have a significant effect on lens fit characteristics. Contact lens material did influence lens fit characteristics, particularly silicone-hydrogels which generally had lower centration and a faster push-up speed of recovery than HEMA lenses (p<0.05). Conclusion: Lag on vertical gaze, and movement on blink in primary gaze generally provide little extra information on overall lens movement compared to horizontal lag, movement on blink in up gaze and push-up recovery speed. They can therefore be excluded from a simplified recording scheme. A simplified and comprehensive soft contact lens fit recording system could consist of a cross-hairs indicating the centre of the cornea; a circle to indicate the lens centration; a mark on the relevant position of the circle to indicate any limbal incursion; a grade (‘B’) below for movement with blink in up-gaze, a grade (‘L’) to the side for horizontal lag and a grade above (‘P’) for the assessed push-up recovery speed.