28 resultados para Conical mirrors

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observation of autosoliton propagation in a dispersion-managed optical transmission system controlled by in-line nonlinear fiber loop switches is reported for what is believed to be the first time. The system is based on a strong dispersion map with large amplifier spacing. Operation at transmission rates of 10 and 40 Gbits/s is demonstrated. ©2004 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terahertz optical asymmetric demultiplexors (TOADs) use a semiconductor optical amplifier in an interferometer to create an all-optical switch and have potential uses in many optical networking applications. Here we demonstrate and compare experimentally a novel and simple method of dramatically increasing the extinction ratio of the device using a symmetrical configuration as compared to a ‘traditional’ configuration. The new configuration is designed to suppress the occurrence of self-switching in the device thus allowing signal pulses to be used at higher power levels. Using the proposed configuration an increase in extinction ratio of 10 dB has been measured on the transmitted port whilst benefiting from an improved input signal power handling capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically demonstrate for the first time that dispersion management and in-line nonlinear optical loop mirrors can achieve all-optical passive regeneration and distance-unlimited transmission of a soliton data stream at 40 Gbit/s over standard fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the feasibility of optical pulse transmission in dispersion-managed fiber systems with in-line nonlinear optical loop mirrors. Applying numerical analysis, we find regimes of stable propagation over long distances in such lines, with a significant increase in the signal-to-noise ratio. © 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.