10 resultados para Congestion Window (cwnd)
em Aston University Research Archive
Resumo:
Adolphe Retté and G.K. Chesterton often use the image of a window, a paradox given the widespread view that Catholic writers are usually closed minded. This article asks whether Charles Taylor's philosophy of the individual could explain this paradox more satisfactorily. Chesterton's windows express a realist epistemology, while Retté's windows express the illumination of faith. The themacity of the subject in their writings, however, shows that their windows give expression to Taylor's 'open immanence', rather than Taylorian 'porosity'. Their reactionary character can be interpreted as a kind of Taylorian 'buffering' which is necessary for believing writers resisting secularity. © 2011 The Author. Published by Oxford University Press 2011; all rights reserved.
Resumo:
Dedicated short range communications (DSRC) was proposed for collaborative safety applications (CSA) in vehicle communications. In this article we propose two adaptive congestion control schemes for DSRC-based CSA. A cross-layer design approach is used with congestion detection at the MAC layer and traffic rate control at the application layer. Simulation results show the effectiveness of the proposed rate control scheme for adapting to dynamic traffic loads.
Resumo:
Congestion control is critical for the provisioning of quality of services (QoS) over dedicated short range communications (DSRC) vehicle networks for road safety applications. In this paper we propose a congestion control method for DSRC vehicle networks at road intersection, with the aims of providing high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method a offline simulation based approach is used to find out the best possible configurations of message rate and MAC layer backoff exponent (BE) for a given number of vehicles equipped with DSRC radios. The identified best configurations are then used online by an roadside access point (AP) for system operation. Simulation results demonstrated that this adaptive method significantly outperforms the fixed control method under varying number of vehicles. The impact of estimation error on the number of vehicles in the network on system level performance is also investigated.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion - a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © Copyright EPLA, 2012.
Resumo:
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL. © 2013 American Chemical Society.
Resumo:
In this paper, a congestion control mechanism is presented for multiservice wireless OFDMA networks. The revenue rate and the user SNR's are used to partition the bandwidth in accordance with a complete partitioning structure. Moreover, through the use of our scheme the QoS of any ongoing connections can be satisfied. Results show that the revenue rate plays an important role in prioritizing the different services. © 2013 Springer Science+Business Media New York.
Resumo:
This paper analyzes a communication network facing users with a continuous distribution of delay cost per unit time. Priority queueing is often used as a way to provide differential services for users with different delay sensitivities. Delay is a key dimension of network service quality, so priority is a valuable resource which is limited and should to be optimally allocated. We investigate the allocation of priority in queues via a simple bidding mechanism. In our mechanism, arriving users can decide not to enter the network at all or submit an announced delay sensitive value. User entering the network obtains priority over all users who make lower bids, and is charged by a payment function which is designed following an exclusion compensation principle. The payment function is proved to be incentive compatible, so the equilibrium bidding behavior leads to the implementation of "cµ-rule". Social warfare or revenue maximizing by appropriately setting the reserve payment is also analyzed.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.
Resumo:
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.