8 resultados para Conduction
em Aston University Research Archive
Resumo:
Impedance spectroscopy has been used to investigate conductivity within boron-doped diamond in an intrinsic/delta-doped/intrinsic (i-d-i) multilayer structure. For a 5 nm thick delta layer, three conduction pathways are observed, which can be assigned to transport within the delta layer and to two differing conduction paths in the i-layers adjoining the delta layer. For transport in the i-layers, thermal trapping/detrapping processes can be observed, and only at the highest temperature investigated (673 K) can transport due to a single conduction process be seen. Impedance spectroscopy is an ideal nondestructive tool for investigating the electrical characteristics of complex diamond structures.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem. 32 (2008), pp. 697–703] for one-dimensional heat conduction with the sources placed outside the space domain of interest, to the two-dimensional setting. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be obtained efficiently with small computational cost.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction. In almost all of the previously proposed MFS for time-dependent heat conduction the fictitious sources are located outside the time-interval of interest. In our case, however, these sources are instead placed outside the space domain of interest in the same manner as is done for stationary heat conduction. A denseness result for this method is discussed and the method is numerically tested showing that accurate numerical results can be obtained. Furthermore, a test example with boundary singularities shows that it is advisable to remove such singularities before applying the MFS.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the backward heat conduction problem (BHCP). We extend the MFS in Johansson and Lesnic (2008) [5] and Johansson et al. (in press) [6] proposed for one and two-dimensional direct heat conduction problems, respectively, with the sources placed outside the space domain of interest. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction in layered materials, where the thermal diffusivity is piecewise constant. Recently, in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 2008;32:697–703], a MFS was proposed with the sources placed outside the space domain of interest, and we extend that technique to numerically approximate the heat flow in layered materials. Theoretical properties of the method, as well as numerical investigations are included.
Resumo:
We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.
Resumo:
The merits of various numerical methods for the solution of the one and two dimensional heat conduction equation with a radiation boundary condition have been examined from a practical standpoint in order to determine accuracies and efficiencies. It is found that the use of five increments to approximate the space derivatives gives sufficiently accurate results provided the time step is not too large; further, the implicit backward difference method of Liebmann (27) is found to be the most accurate method. On this basis, a new implicit method is proposed for the solution of the three-dimensional heat conduction equation with radiation boundary conditions. The accuracies of the integral and analogue computer methods are also investigated.
Resumo:
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.