3 resultados para Conditional knockout mouse

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adrenomedullin (AM), a potent vasoactive peptide, is elevated in certain disease states such as sepsis. Its role as a physiologically relevant peptide has been confirmed with the advent of the homozygous lethal AM peptide knockout mouse. So far, there have been few and conflicting studies which examine the regulatory role of AM at the receptor level. In this article, we discuss the few studies that have been presented on the desensitisation of AM receptors and also present novel data on the desensitisation of endogenous AM receptors in Rat-2 fibroblasts. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been reported as a wound response protein. Once over-expressed by cells under stress such as during wound healing or following tissue damage, TG2 can be secreted and deposited into extracellular matrix, where it forms a heterocomplex (TG-FN) with the abundant matrix protein fibronectin (FN). A further cellular response elicited after tissue damage is that of matrix remodelling leading to the release of the Arg-Gly-Asp (RGD) containing matrix fragments by matrix matelloproteinases (MMPs). These peptides are able to block the interaction between integrin cell surface receptors and ECM proteins, leading to the loss of cell adhesion and ultimately Anoikis. This study provides a mechanism for TG2, as a stress-induced matrix protein, in protecting the cells from the RGD-dependent loss of cell adhesion and rescuing the cells from Anoikis. Mouse fibroblasts were used as a major model for this study, including different types of cell surface receptor knockout mouse embryonic fibroblasts (MEFs) (such as syndecan-4, a5, ß1 or ß3 integrins). In addition specific syndecan-2 targetting siRNAs, ß1 integrin and a4ß1 integrin functional blocking antibodies, and a specific targeting peptide against a5ß1 integrin A5-1 were used to investigate the involvement of these receptors in the RGD-independent cell adhesion on TG-FN. Crucial for TG-FN to compensate the RGD-independent cell adhesion and actin cytoskeleton formation is the direct interaction between the heparan sulfate chains of syndecan-4 and TG2, which elicits the inside-out signalling of a5ß1 integrin and the intracellular activation of syndecan-2 by protein kinase C a (PKCa). By using specific inhibitors, a cell-permeable inhibiting peptide and the detection of the phosphorylation sites for protein kinases and/or the translocation of PKCa via Western blotting, the activation of PKCa, focal adhesion kinase (FAK), ERK1/2 and Rho kinase (ROCK) were confirmed as downstream signalling molecules. Importantly, this study also investigated the influence of TG-FN on matrix turnover and demonstrated that TG-FN can restore the RGD-independent FN deposition process via an a5ß1 integrin and syndecan-4/2 co-signalling pathway linked by PKCa in a transamidating-independent manner. These data provide a novel function for TG2 in wound healing and matrix turnover which is a key event in a number of both physiological and pathological processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atherosclerosis is a chronic inflammatory disease occurring within the artery wall. A crucial step in atherogenesis is the infiltration and retention of monocytes into the subendothelial space of large arteries induced by chemokines and growth factors. Angiopoietin-1 (Ang-1) regulates angiogenesis and reduces vascular permeability and has also 15 been reported to promote monocyte migration in vitro. We investigated the role of Ang-1 in atherosclerosis-prone apolipoprotein-E (Apo-E) knockout mouse. Apo-E knockout (Apo-E-/-) mice fed a western or normal chow diet received a single iv injection of adenovirus encoding Ang-1 or control vector. Adenovirus-mediated systemic expression of Ang-1 induced a significant increase in early atherosclerotic lesion size and monocyte/macrophage accumulation compared with control animals receiving empty vector. Ang-1 significantly increased plasma MCP-1 and VEGF levels as measured by ELISA. FACS analysis showed that Ang-1 selectively increased inflammatory Gr1þmonocytes in the circulation, while the cell-surface 25 expression of CD11b, which mediates monocyte emigration, was significantly reduced. Ang-1 specifically increases circulating Gr1þinflammatory monocytes and increases monocyte/macrophage retention in atherosclerotic plaques, thereby contributing to development of atherosclerosis.