10 resultados para Concurrent engineering

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses three major areas of knowledge; business process reengineering (BPR), soft systems methodology (SSM) and concurrent engineering (CE) to demonstrate that their philosophies are complementary. An example is given depicting how a manufacturing resource planning system is set up and how improvements can be achieved by applying CE best practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Completing projects faster than normal is always a challenge as it often demands many paradigm shifts. Globalization opportunities and competition from private sectors and multinationals are forcing the management of public sector organizations in India's petroleum industry to take various aggressive strategies to maintain profitability. These projects are required to be completed sooner than with a typical schedule to remain competitive, get faster return on investment and give longer project life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discusses the necessity for the conscious recognition of the phenomenon known as the extended enterprise; this demands that product, process and supply chain design are all considered simultaneously. Structure must be given to the extended enterprise in order to understand and manage it efficaciously. The authors discuss multiple perspectives for doing this, and employ the notions of “3-dimensional concurrent engineering” and “holonic thinking” for conceiving what the structure may look like. Describes a current “action research” project that is investigating potential lead-time reductions within an extended enterprise’s product introduction process. This aims to produce process visualisations, a framework for structuring and sychronising phases and stage-gates within the extended enterprise, and a new simulation tool which will provide a synthetic distributed hypermedia network. These deliverables will be used to play strategic “games” to explore problem issues within the product introduction process that belongs to the extended enterprise, develop teamwork across autonomous companies, and ultimately, contribute to the design of future extended enterprise supply chains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

If product cycle time reduction is the mission, and the multifunctional team is the means of achieving the mission, what then is the modus operandi by which this means is to accomplish its mission? This paper asserts that a preferred modus operandi for the multifunctional team is to adopt a process-oriented view of the manufacturing enterprise, and for this it needs the medium of a process map [16] The substance of this paper is a methodology which enables the creation of such maps Specific examples of process models drawn from the product develop ment life cycle are presented and described in order to support the methodology's integrity and value The specific deliverables we have so far obtained are a methodology for process capture and analysis, a collection of process models spanning the product development cycle, and, an engineering handbook which hosts these models and presents a computer-based means of navigating through these processes in order to allow users a better understanding of the nature of the business, their role in it, and why the job that they do benefits the work of the company We assert that this kind of thinking is the essence of concurrent engineering implementation, and further that the systemigram process models uniquely stim ulate and organise such thinking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concurrent engineering and design for manufacture and assembly strategies have become pervasive in use in a wide array of industrial settings. These strategies have generally focused on product and process design issues based on capability concerns. The strategies have been historically justified using cost savings calculations focusing on easily quantifiable costs such as raw material savings or manufacturing or assembly operations no longer required. It is argued herein that neither the focus of the strategies nor the means of justification are adequate. Product and process design strategies should include both capability and capacity concerns and justification procedures should include the financial effects that the product and process changes would have on the entire company. The authors of this paper take this more holistic view of the problem and examine an innovative new design strategy using a comprehensive enterprise simulation tool. The results indicate that both the design strategy and the simulator show promise for further industrial use. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Completing projects faster than the normal duration is always a challenge to the management of any project, as it often demands many paradigm shifts. Opportunities of globalization, competition from private sectors and multinationals force the management of public sector organizations in the Indian petroleum sector to take various aggressive strategies to maintain their profitability. Constructing infrastructure for handling petroleum products is one of them. Moreover, these projects are required to be completed in faster duration compared to normal schedules to remain competitive, to get faster return on investment, and to give longer project life. However, using conventional tools and techniques of project management, it is impossible to handle the problem of reducing the project duration from a normal period. This study proposes the use of concurrent engineering in managing projects for radically reducing project duration. The phases of the project are accomplished concurrently/simultaneously instead of in a series. The complexities that arise in managing projects are tackled through restructuring project organization, improving management commitment, strengthening project-planning activities, ensuring project quality, managing project risk objectively and integrating project activities through management information systems. These would not only ensure completion of projects in fast track, but also improve project effectiveness in terms of quality, cost effectiveness, team building, etc. and in turn overall productivity of the project organization would improve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.