32 resultados para Concerns Based Adoption Model CBAM
em Aston University Research Archive
Resumo:
Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.
Resumo:
This paper describes the development of a tree-based decision model to predict the severity of pediatric asthma exacerbations in the emergency department (ED) at 2 h following triage. The model was constructed from retrospective patient data abstracted from the ED charts. The original data was preprocessed to eliminate questionable patient records and to normalize values of age-dependent clinical attributes. The model uses attributes routinely collected in the ED and provides predictions even for incomplete observations. Its performance was verified on independent validating data (split-sample validation) where it demonstrated AUC (area under ROC curve) of 0.83, sensitivity of 84%, specificity of 71% and the Brier score of 0.18. The model is intended to supplement an asthma clinical practice guideline, however, it can be also used as a stand-alone decision tool.
Resumo:
In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
Resumo:
Muscle invasive urinary bladder cancer is one of the most lethal cancers and its detection at the time of transurethral resection remains limited and diagnostic methods are urgently needed. We have developed a muscle invasive transitional cell carcinoma (TCC) model of the bladder using porcine bladder scaffold and the human bladder cancer cell line 5637. The progression of implanted cancer cells to muscle invasion can be monitored by measuring changes in the spectrum of endogenous fluorophores such as reduced nicotinamide dinucleotide (NADH) and flavins. We believe this could act as a useful tool for the study of fluorescence dynamics of developing muscle invasive bladder cancer in patients.
Resumo:
Building an interest model is the key to realize personalized text recommendation. Previous interest models neglect the fact that a user may have multiple angles of interests. Different angles of interest provide different requests and criteria for text recommendation. This paper proposes an interest model that consists of two kinds of angles: persistence and pattern, which can be combined to form complex angles. The model uses a new method to represent the long-term interest and the short-term interest, and distinguishes the interest on object and the interest on the link structure of objects. Experiments with news-scale text data show that the interest on object and the interest on link structure have real requirements, and it is effective to recommend texts according to the angles.
Resumo:
Aircraft manufacturing industries are looking for solutions in order to increase their productivity. One of the solutions is to apply the metrology systems during the production and assembly processes. Metrology Process Model (MPM) (Maropoulos et al, 2007) has been introduced which emphasises metrology applications with assembly planning, manufacturing processes and product designing. Measurability analysis is part of the MPM and the aim of this analysis is to check the feasibility for measuring the designed large scale components. Measurability Analysis has been integrated in order to provide an efficient matching system. Metrology database is structured by developing the Metrology Classification Model. Furthermore, the feature-based selection model is also explained. By combining two classification models, a novel approach and selection processes for integrated measurability analysis system (MAS) are introduced and such integrated MAS could provide much more meaningful matching results for the operators. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This paper presents a simple profitability-based decision model to show how synergistic gains generated by the joint adoption of complementary innovations may influence the firm's adoption decision. For this purpose a weighted index of intra-firm diffusion is built to investigate empirically the drivers of the intensity of joint use of a set of complementary innovations. The findings indicate that establishment size, ownership structure and product market concentration are important determinants of the intensity of use. Interestingly, the factors that affect the extent of use of technological innovations do also affect that of clusters of management practices. However, they can explain only part of the heterogeneity of the benefits from joint use.
Resumo:
Purpose - The purpose of this paper is to construct a new e-commerce innovation and adoption model that takes into account various stages of e-commerce adoption (interactive, non-interactive and stabilised) and covers technological, organisational and environmental factors. This was tested using data collected from manufacturing and service companies in Saudi Arabia (SA) to reveal inhibitors and catalysts for e-commerce adoption. Design/methodology/approach - This study uses new data from surveys from 202 companies and then uses exploratory factor analysis and structural equation modelling for analyses. Findings - This study shows that the new stage-oriented model (SOM) is valid and can reveal specific detailed nuances of e-commerce adoption within a particular setting. Surprising results show that SA is not so very different to developed western countries in respect to e-commerce adoption. However there are some important differences which are discussed in detail. Research limitations/implications - A new SOM for e-commerce adoption is provided which may be used by other IS adoption researchers. Practical implications - Managers responsible for the adoption of e-commerce in SA, the Middle East and beyond can learn from these findings to speed up adoption rates and make e-commerce more effective. Social implications - This work may help spread e-commerce use throughout SA, the Middle East and to other developing nations. Originality/value - The results add to the extremely limited number of empirical studies that has been conducted to investigate e-commerce adoption in the context of Arabic countries.
Resumo:
There has been an increasing interest in the use of agent-based simulation and some discussion of the relative merits of this approach as compared to discrete-event simulation. There are differing views on whether an agent-based simulation offers capabilities that discrete-event cannot provide or whether all agent-based applications can at least in theory be undertaken using a discrete-event approach. This paper presents a simple agent-based NetLogo model and corresponding discrete-event versions implemented in the widely used ARENA software. The two versions of the discrete-event model presented use a traditional process flow approach normally adopted in discrete-event simulation software and also an agent-based approach to the model build. In addition a real-time spatial visual display facility is provided using a spreadsheet platform controlled by VBA code embedded within the ARENA model. Initial findings from this investigation are that discrete-event simulation can indeed be used to implement agent-based models and with suitable integration elements such as VBA provide the spatial displays associated with agent-based software.
Resumo:
The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.
Resumo:
The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.
Resumo:
In this paper a Markov chain based analytical model is proposed to evaluate the slotted CSMA/CA algorithm specified in the MAC layer of IEEE 802.15.4 standard. The analytical model consists of two two-dimensional Markov chains, used to model the state transition of an 802.15.4 device, during the periods of a transmission and between two consecutive frame transmissions, respectively. By introducing the two Markov chains a small number of Markov states are required and the scalability of the analytical model is improved. The analytical model is used to investigate the impact of the CSMA/CA parameters, the number of contending devices, and the data frame size on the network performance in terms of throughput and energy efficiency. It is shown by simulations that the proposed analytical model can accurately predict the performance of slotted CSMA/CA algorithm for uplink, downlink and bi-direction traffic, with both acknowledgement and non-acknowledgement modes.
Resumo:
Developmental neurotoxicity is a major issue in human health and may have lasting neurological implications. In this preliminary study we exposed differentiating Ntera2/clone D1 (NT2/D1) cell neurospheres to known human teratogens classed as non-embryotoxic (acrylamide), weakly embryotoxic (lithium, valproic acid) and strongly embryotoxic (hydroxyurea) as listed by European Centre for the Validation of Alternative Methods (ECVAM) and examined endpoints of cell viability and neuronal protein marker expression specific to the central nervous system, to identify developmental neurotoxins. Following induction of neuronal differentiation, valproic acid had the most significant effect on neurogenesis, in terms of reduced viability and decreased neuronal markers. Lithium had least effect on viability and did not significantly alter the expression of neuronal markers. Hydroxyurea significantly reduced cell viability but did not affect neuronal protein marker expression. Acrylamide reduced neurosphere viability but did not affect neuronal protein marker expression. Overall, this NT2/D1 -based neurosphere model of neurogenesis, may provide the basis for a model of developmental neurotoxicity in vitro.
Resumo:
The small intestine poses a major barrier to the efficient absorption of orally administered therapeutics. Intestinal epithelial cells are an extremely important site for extrahepatic clearance, primarily due to prominent P-glycoprotein-mediated active efflux and the presence of cytochrome P450s. We describe a physiologically based pharmacokinetic model which incorporates geometric variations, pH alterations and descriptions of the abundance and distribution of cytochrome 3A and P-glycoprotein along the length of the small intestine. Simulations using preclinical in vitro data for model drugs were performed to establish the influence of P-glycoprotein efflux, cytochrome 3A metabolism and passive permeability on drug available for absorption within the enterocytes. The fraction of drug escaping the enterocyte (F(G)) for 10 cytochrome 3A substrates with a range of intrinsic metabolic clearances were simulated. Following incorporation of P-glycoprotein in vitro efflux ratios all predicted F(G) values were within 20% of observed in vivo F(G). The presence of P-glycoprotein increased the level of cytochrome 3A drug metabolism by up to 12-fold in the distal intestine. F(G) was highly sensitive to changes in intrinsic metabolic clearance but less sensitive to changes in intestinal drug permeability. The model will be valuable for quantifying aspects of intestinal drug absorption and distribution.