6 resultados para Computerized Axial Tomography
em Aston University Research Archive
Resumo:
Purpose. To use anterior segment optical coherence tomography (AS-OCT) to analyze ciliary muscle morphology and changes with accommodation and axial ametropia. Methods. Fifty prepresbyopic volunteers, aged 19 to 34 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscles in the relaxed state and at stimulus vergence levels of -4 and -8 D. Objective accommodative responses and axial lengths were also recorded. Two-way, mixed-factor analyses of variance (ANOVAs) were used to assess the changes in ciliary muscle parameters with accommodation and determine whether these changes are dependent on the nasal–temporal aspect or axial length, whereas linear regression analysis was used to analyze the relationship between axial length and ciliary muscle length. Results. The ciliary muscle was longer (r = 0.34, P = 0.02), but not significantly thicker (F = 2.84, P = 0.06), in eyes with greater axial length. With accommodation, the ciliary muscle showed a contractile shortening (F = 42.9. P < 0.001), particularly anteriorly (F = 177.2, P < 0.001), and a thickening of the anterior portion (F= 46.2, P < 0.001). The ciliary muscle was thicker (F = 17.8, P < 0.001) and showed a greater contractile response on the temporal side. Conclusions. The accommodative changes observed support an anterior, as well as centripetal, contractile shift of ciliary muscle mass.
Resumo:
Purpose. To evaluate the repeatability and reproducibility of subfoveal choroidal thickness (CT) calculations performed manually using optical coherence tomography (OCT). Methods. The CT was imaged in vivo at each of two visits on 11 healthy volunteers (mean age, 35.72 ± 13.19 years) using the spectral domain OCT. CT was manually measured after applying ImageJ processing filters on 15 radial subfoveal scans. Each radial scan was spaced 12° from each other and contained 2500 A-scans. The coefficient of variability, coefficient of repeatability (CoR), coefficient of reproducibility, and intraclass correlation coefficient determined the reproducibility and repeatability of the calculation. Axial length (AL) and mean spherical equivalent refractive error were measured with the IOLMaster and an open view autorefractor to study their potential relationship with CT. Results. The within-visit and between-visit coefficient of variability, CoR, coefficient of reproducibility, and intraclass correlation coefficient were 0.80, 2.97% 2.44%, and 99%, respectively. The subfoveal CT correlated significantly with AL (R = -0.60, p = 0.05). Conclusions. The subfoveal CT could be measured manually in vivo using OCT and the readings obtained from the healthy subjects evaluated were repeatable and reproducible. It is proposed that OCT could be a useful instrument to perform in vivo assessment and monitoring of CT changes in retinal disease. The preliminary results suggest a negative correlation between subfoveal CT and AL in such a way that it decreases with increasing AL but not with refractive error.
Resumo:
We assess the accuracy of the Visante anterior segment optical coherence tomographer (AS-OCT) and present improved formulas for measurement of surface curvature and axial separation. Measurements are made in physical model eyes. Accuracy is compared for measurements of corneal thickness (d1) and anterior chamber depth (d2) using-built-in AS-OCT software versus the improved scheme. The improved scheme enables measurements of lens thickness (d 3) and surface curvature, in the form of conic sections specified by vertex radii and conic constants. These parameters are converted to surface coordinates for error analysis. The built-in AS-OCT software typically overestimates (mean±standard deviation(SD)]d1 by +62±4 μm and d2 by +4±88μm. The improved scheme reduces d1 (-0.4±4 μm) and d2 (0±49 μm) errors while also reducing d3 errors from +218±90 (uncorrected) to +14±123 μm (corrected). Surface x coordinate errors gradually increase toward the periphery. Considering the central 6-mm zone of each surface, the x coordinate errors for anterior and posterior corneal surfaces reached +3±10 and 0±23 μm, respectively, with the improved scheme. Those of the anterior and posterior lens surfaces reached +2±22 and +11±71 μm, respectively. Our improved scheme reduced AS-OCT errors and could, therefore, enhance pre- and postoperative assessments of keratorefractive or cataract surgery, including measurement of accommodating intraocular lenses. © 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A tilted fiber Bragg grating (TFBG) was integrated as the dispersive element in a high performance biomedical imaging system. The spectrum emitted by the 23 mm long active region of the fiber is projected through custom designed optics consisting of a cylindrical lens for vertical beam collimation and successively by an achromatic doublet onto a linear detector array. High resolution tomograms of biomedical samples were successfully acquired by the frequency domain OCT-system. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 10.2 μm lateral resolution. The miniaturization reduces costs and has the potential to further extend the field of application for OCT-systems in biology, medicine and technology. © 2014 SPIE.
Resumo:
A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution. © 2014 SPIE.
Resumo:
Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.