2 resultados para Computerised assessment

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour. Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation. To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation. Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure. To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mental-health risk assessment practice in the UK is mainly paper-based, with little standardisation in the tools that are used across the Services. The tools that are available tend to rely on minimal sets of items and unsophisticated scoring methods to identify at-risk individuals. This means the reasoning by which an outcome has been determined remains uncertain. Consequently, there is little provision for: including the patient as an active party in the assessment process, identifying underlying causes of risk, and eecting shared decision-making. This thesis develops a tool-chain for the formulation and deployment of a computerised clinical decision support system for mental-health risk assessment. The resultant tool, GRiST, will be based on consensual domain expert knowledge that will be validated as part of the research, and will incorporate a proven psychological model of classication for risk computation. GRiST will have an ambitious remit of being a platform that can be used over the Internet, by both the clinician and the layperson, in multiple settings, and in the assessment of patients with varying demographics. Flexibility will therefore be a guiding principle in the development of the platform, to the extent that GRiST will present an assessment environment that is tailored to the circumstances in which it nds itself. XML and XSLT will be the key technologies that help deliver this exibility.