24 resultados para Computer vision system
em Aston University Research Archive
Resumo:
Computer integrated manufacture has brought about great advances in manufacturing technology and its recognition is world wide. Cold roll forming of thin-walled sections, and in particular the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is but one such area where computer integrated manufacture can make a positive contribution. The work reported in this thesis, concerned with the development of an integrated manufacturing system for assisting the design and manufacture of form-rolls, was undertaken in collaboration with a leading manufacturer of thin-walled sections. A suit of computer programs, written in FORTRAN 77, have been developed to provide computer aids for every aspect of work in form-roll design and manufacture including cost estimation and stock control aids. The first phase of the development programme dealt with the establishment of CAD facilities for form-roll design, comprising the design of the finished section, the flower pattern, the roll design and the interactive roll editor program. Concerning the CAM facilities, dealt with in the second phase, an expert system roll machining processor and a general post-processor have been developed for considering the roll geometry and automatically generating NC tape programs for any required CNC lathe system. These programs have been successfully implemented, as an integrated manufacturing software system, on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of the integrated system has been found beneficial in all aspects of form-roll design and manufacture. Design and manufacturing lead times have been reduced by several weeks, quality has improved considerably and productivity has increased. The work has also demonstrated the promising nature of the expert systems approach to computer integrated manufacture.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A sizeable amount of the testing in eye care, requires either the identification of targets such as letters to assess functional vision, or the subjective evaluation of imagery by an examiner. Computers can render a variety of different targets on their monitors and can be used to store and analyse ophthalmic images. However, existing computing hardware tends to be large, screen resolutions are often too low, and objective assessments of ophthalmic images unreliable. Recent advances in mobile computing hardware and computer-vision systems can be used to enhance clinical testing in optometry. High resolution touch screens embedded in mobile devices, can render targets at a wide variety of distances and can be used to record and respond to patient responses, automating testing methods. This has opened up new opportunities in computerised near vision testing. Equally, new image processing techniques can be used to increase the validity and reliability of objective computer vision systems. Three novel apps for assessing reading speed, contrast sensitivity and amplitude of accommodation were created by the author to demonstrate the potential of mobile computing to enhance clinical measurement. The reading speed app could present sentences effectively, control illumination and automate the testing procedure for reading speed assessment. Meanwhile the contrast sensitivity app made use of a bit stealing technique and swept frequency target, to rapidly assess a patient’s full contrast sensitivity function at both near and far distances. Finally, customised electronic hardware was created and interfaced to an app on a smartphone device to allow free space amplitude of accommodation measurement. A new geometrical model of the tear film and a ray tracing simulation of a Placido disc topographer were produced to provide insights on the effect of tear film breakdown on ophthalmic images. Furthermore, a new computer vision system, that used a novel eye-lash segmentation technique, was created to demonstrate the potential of computer vision systems for the clinical assessment of tear stability. Studies undertaken by the author to assess the validity and repeatability of the novel apps, found that their repeatability was comparable to, or better, than existing clinical methods for reading speed and contrast sensitivity assessment. Furthermore, the apps offered reduced examination times in comparison to their paper based equivalents. The reading speed and amplitude of accommodation apps correlated highly with existing methods of assessment supporting their validity. Their still remains questions over the validity of using a swept frequency sine-wave target to assess patient’s contrast sensitivity functions as no clinical test provides the range of spatial frequencies and contrasts, nor equivalent assessment at distance and near. A validation study of the new computer vision system found that the authors tear metric correlated better with existing subjective measures of tear film stability than those of a competing computer-vision system. However, repeatability was poor in comparison to the subjective measures due to eye lash interference. The new mobile apps, computer vision system, and studies outlined in this thesis provide further insight into the potential of applying mobile and image processing technology to enhance clinical testing by eye care professionals.
Resumo:
Deformable models are an attractive approach to recognizing objects which have considerable within-class variability such as handwritten characters. However, there are severe search problems associated with fitting the models to data which could be reduced if a better starting point for the search were available. We show that by training a neural network to predict how a deformable model should be instantiated from an input image, such improved starting points can be obtained. This method has been implemented for a system that recognizes handwritten digits using deformable models, and the results show that the search time can be significantly reduced without compromising recognition performance. © 1997 Academic Press.
Resumo:
There have been two main approaches to feature detection in human and computer vision - luminance-based and energy-based. Bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of elements in a 3-element contour-alignment task? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square wave and Fourier components in a given image have a common phase. Observers judged whether the centre element (eg ±458 phase) was to the left or right of the flanking pair (eg 0º phase). Lateral offset of the centre element was varied to find the point of subjective alignment from the fitted psychometric function. This point shifted systematically to the left or right according to the sign of the centre phase, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks and other derivative-based features, but not by energy peaks which (by design) predicted no shift at all. These results on contour alignment agree well with earlier ones from a more explicit feature-marking task, and strongly suggest that human vision does not use local energy peaks to locate basic first-order features. [Supported by the Wellcome Trust (ref: 056093)]
Resumo:
Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.
Resumo:
There have been two main approaches to feature detection in human and computer vision - based either on the luminance distribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases (Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0 degrees and 45 degrees ; Experiment 2). The feature positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nevertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights from both. (C)2004 Elsevier Ltd. All rights reserved.
Resumo:
A recently proposed colour based tracking algorithm has been established to track objects in real circumstances [Zivkovic, Z., Krose, B. 2004. An EM-like algorithm for color-histogram-based object tracking. In: Proc, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 798-803]. To improve the performance of this technique in complex scenes, in this paper we propose a new algorithm for optimally adapting the ellipse outlining the objects of interest. This paper presents a Lagrangian based method to integrate a regularising component into the covariance matrix to be computed. Technically, we intend to reduce the residuals between the estimated probability distribution and the expected one. We argue that, by doing this, the shape of the ellipse can be properly adapted in the tracking stage. Experimental results show that the proposed method has favourable performance in shape adaption and object localisation.
Resumo:
This study considers the application of image analysis in petrography and investigates the possibilities for advancing existing techniques by introducing feature extraction and analysis capabilities of a higher level than those currently employed. The aim is to construct relevant, useful descriptions of crystal form and inter-crystal relations in polycrystalline igneous rock sections. Such descriptions cannot be derived until the `ownership' of boundaries between adjacent crystals has been established: this is the fundamental problem of crystal boundary assignment. An analysis of this problem establishes key image features which reveal boundary ownership; a set of explicit analysis rules is presented. A petrographic image analysis scheme based on these principles is outlined and the implementation of key components of the scheme considered. An algorithm for the extraction and symbolic representation of image structural information is developed. A new multiscale analysis algorithm which produces a hierarchical description of the linear and near-linear structure on a contour is presented in detail. Novel techniques for symmetry analysis are developed. The analyses considered contribute both to the solution of the boundary assignment problem and to the construction of geologically useful descriptions of crystal form. The analysis scheme which is developed employs grouping principles such as collinearity, parallelism, symmetry and continuity, so providing a link between this study and more general work in perceptual grouping and intermediate level computer vision. Consequently, the techniques developed in this study may be expected to find wider application beyond the petrographic domain.
Resumo:
We present a probabilistic, online, depth map fusion framework, whose generative model for the sensor measurement process accurately incorporates both long-range visibility constraints and a spatially varying, probabilistic outlier model. In addition, we propose an inference algorithm that updates the state variables of this model in linear time each frame. Our detailed evaluation compares our approach against several others, demonstrating and explaining the improvements that this model offers, as well as highlighting a problem with all current methods: systemic bias. © 2012 Springer-Verlag.
Resumo:
Smart cameras allow pre-processing of video data on the camera instead of sending it to a remote server for further analysis. Having a network of smart cameras allows various vision tasks to be processed in a distributed fashion. While cameras may have different tasks, we concentrate on distributed tracking in smart camera networks. This application introduces various highly interesting problems. Firstly, how can conflicting goals be satisfied such as cameras in the network try to track objects while also trying to keep communication overhead low? Secondly, how can cameras in the network self adapt in response to the behavior of objects and changes in scenarios, to ensure continued efficient performance? Thirdly, how can cameras organise themselves to improve the overall network's performance and efficiency? This paper presents a simulation environment, called CamSim, allowing distributed self-adaptation and self-organisation algorithms to be tested, without setting up a physical smart camera network. The simulation tool is written in Java and hence allows high portability between different operating systems. Relaxing various problems of computer vision and network communication enables a focus on implementing and testing new self-adaptation and self-organisation algorithms for cameras to use.
Resumo:
A recent trend in smart camera networks is that they are able to modify the functionality during runtime to better reflect changes in the observed scenes and in the specified monitoring tasks. In this paper we focus on different configuration methods for such networks. A configuration is given by three components: (i) a description of the camera nodes, (ii) a specification of the area of interest by means of observation points and the associated monitoring activities, and (iii) a description of the analysis tasks. We introduce centralized, distributed and proprioceptive configuration methods and compare their properties and performance. © 2012 IEEE.