13 resultados para Computer storage devices.
em Aston University Research Archive
Resumo:
In recent years the optical domain has been traditionally reserved for node-to-node transmission with the processing and switching achieved entirely in the electrical domain. However, with the constantly increasing demand for bandwidth and the resultant increase in transmission speeds, there is a very real fear that current electronic technology as used for processing will not be able to cope with future demands. Fuelled by this requirement for faster processing speeds, considerable research is currently being carried out into the potential of All-optical processing. One of the fundamental obstacles in realising All-optical processing is the requirement for All-optical buffering. Without all-optical buffers it is extremely difficult to resolve situations such as contention and congestion. Many devices have been proposed to solve this problem however none of them provide the perfect solution. The subject of this research is to experimentally demonstrate a novel all-optical memory device. Unlike many previously demonstrated optical storage devices the device under consideration utilises only a single loop mirror and a single SOA as its switch, whilst providing full regenerative capabilities required for long-term storage. I will explain some of the principles and characteristics of the device, which will then be experimentally demonstrated. The device configuration will then be studied and investigated as to its suitability for Hybrid Integrated Technology.
Resumo:
Mode-locked lasers emitting a train of femtosecond pulses called dissipative solitons are an enabling technology for metrology, high-resolution spectroscopy, fibre optic communications, nano-optics and many other fields of science and applications. Recently, the vector nature of dissipative solitons has been exploited to demonstrate mode locked lasing with both locked and rapidly evolving states of polarisation. Here, for an erbium-doped fibre laser mode locked with carbon nanotubes, we demonstrate the first experimental and theoretical evidence of a new class of slowly evolving vector solitons characterized by a double-scroll chaotic polarisation attractor substantially different from Lorenz, Rössler and Ikeda strange attractors. The underlying physics comprises a long time scale coherent coupling of two polarisation modes. The observed phenomena, apart from the fundamental interest, provide a base for advances in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetisation in data storage devices and many other areas. © 2014 CIOMP. All rights reserved.
Resumo:
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.
Resumo:
The Fibre Distributed Data Interface (FDDI) represents the new generation of local area networks (LANs). These high speed LANs are capable of supporting up to 500 users over a 100 km distance. User traffic is expected to be as diverse as file transfers, packet voice and video. As the proliferation of FDDI LANs continues, the need to interconnect these LANs arises. FDDI LAN interconnection can be achieved in a variety of different ways. Some of the most commonly used today are public data networks, dial up lines and private circuits. For applications that can potentially generate large quantities of traffic, such as an FDDI LAN, it is cost effective to use a private circuit leased from the public carrier. In order to send traffic from one LAN to another across the leased line, a routing algorithm is required. Much research has been done on the Bellman-Ford algorithm and many implementations of it exist in computer networks. However, due to its instability and problems with routing table loops it is an unsatisfactory algorithm for interconnected FDDI LANs. A new algorithm, termed ISIS which is being standardized by the ISO provides a far better solution. ISIS will be implemented in many manufacturers routing devices. In order to make the work as practical as possible, this algorithm will be used as the basis for all the new algorithms presented. The ISIS algorithm can be improved by exploiting information that is dropped by that algorithm during the calculation process. A new algorithm, called Down Stream Path Splits (DSPS), uses this information and requires only minor modification to some of the ISIS routing procedures. DSPS provides a higher network performance, with very little additional processing and storage requirements. A second algorithm, also based on the ISIS algorithm, generates a massive increase in network performance. This is achieved by selecting alternative paths through the network in times of heavy congestion. This algorithm may select the alternative path at either the originating node, or any node along the path. It requires more processing and memory storage than DSPS, but generates a higher network power. The final algorithm combines the DSPS algorithm with the alternative path algorithm. This is the most flexible and powerful of the algorithms developed. However, it is somewhat complex and requires a fairly large storage area at each node. The performance of the new routing algorithms is tested in a comprehensive model of interconnected LANs. This model incorporates the transport through physical layers and generates random topologies for routing algorithm performance comparisons. Using this model it is possible to determine which algorithm provides the best performance without introducing significant complexity and storage requirements.
Resumo:
Serial and parallel interconnection of photonic devices is integral to the construction of any all-optical data processing system. This thesis presents results from a series of experiments centering on the use of the nonlinear-optical loop mirror (NOLM) switch in architectures for the manipulation and generation of ultrashort pulses. Detailed analysis of soliton switching in a single NOLM and cascade of two NOLM's is performed, centering on primary limitations to device operation, effect of cascading on amplitude response, and impact of switching on the characteristics of incident pulses. By using relatively long input pulses, device failure due to stimulated Raman generation is postponed to demonstrate multiple-peaked switching for the first time. It is found that while cascading leads to a sharpening of the overall switching characteristic, pulse spectral and temporal integrity is not significantly degraded, and emerging pulses retain their essential soliton character. In addition, by including an asymmetrically placed in-fibre Bragg reflector as a wavelength selective loss element in the basic NOLM configuration, both soliton self-switching and dual-wavelength control-pulse switching are spectrally quantised. Results are presented from a novel dual-wavelength laser configuration generating pulse trains with an ultra-low rms inter-pulse-stream timing jitter level of 630fs enabling application in ultrafast switching environments at data rates as high as 130GBits/s. In addition, the fibre NOLM is included in architectures for all-optical memory, demonstrating storage and logical inversion of a 0.5kByte random data sequence; and ultrafast phase-locking of a gain-switched distributed feedback laser at 1.062GHz, the fourteenth harmonic of the system baseband frequency. The stringent requirements for environmental robustness of these architectures highlight the primary weaknesses of the NOLM in its fibre form and recommendations to overcome its inherent drawbacks are presented.
Resumo:
Computer-Based Learning systems of one sort or another have been in existence for almost 20 years, but they have yet to achieve real credibility within Commerce, Industry or Education. A variety of reasons could be postulated for this, typically: - cost - complexity - inefficiency - inflexibility - tedium Obviously different systems deserve different levels and types of criticism, but it still remains true that Computer-Based Learning (CBL) is falling significantly short of its potential. Experience of a small, but highly successful CBL system within a large, geographically distributed industry (the National Coal Board) prompted an investigation into currently available packages, the original intention being to purchase the most suitable software and run it on existing computer hardware, alongside existing software systems. It became apparent that none of the available CBL packages were suitable, and a decision was taken to develop an in-house Computer-Assisted Instruction system according to the following criteria: - cheap to run; - easy to author course material; - easy to use; - requires no computing knowledge to use (as either an author or student) ; - efficient in the use of computer resources; - has a comprehensive range of facilities at all levels. This thesis describes the initial investigation, resultant observations and the design, development and implementation of the SCHOOL system. One of the principal characteristics c£ SCHOOL is that it uses a hierarchical database structure for the storage of course material - thereby providing inherently a great deal of the power, flexibility and efficiency originally required. Trials using the SCHOOL system on IBM 303X series equipment are also detailed, along with proposed and current development work on what is essentially an operational CBL system within a large-scale Industrial environment.
Resumo:
This thesis investigates how people select items from a computer display using the mouse input device. The term computer mouse refers to a class of input devices which share certain features, but these may have different characteristics which influence the ways in which people use the device. Although task completion time is one of the most commonly used performance measures for input device evaluation, there is no consensus as to its definition. Furthermore most mouse studies fail to provide adequate assurances regarding its correct measurement.Therefore precise and accurate timing software were developed which permitted the recording of movement data which by means of automated analysis yielded the device movements made. Input system gain, an important task parameter, has been poorly defined and misconceptualized in most previous studies. The issue of gain has been clarified and investigated within this thesis. Movement characteristics varied between users and within users, even for the same task conditions. The variables of target size, movement amplitude, and experience exerted significant effects on performance. Subjects consistently undershot the target area. This may be a consequence of the particular task demands. Although task completion times indicated that mouse performance had stabilized after 132 trials the movement traces, even of very experienced users, indicated that there was still considerable room for improvement in performance, as indicated by the proportion of poorly made movements. The mouse input device was suitable for older novice device users, but they took longer to complete the experimental trials. Given the diversity and inconsistency of device movements, even for the same task conditions, caution is urged when interpreting averaged grouped data. Performance was found to be sensitive to; task conditions, device implementations, and experience in ways which are problematic for the theoretical descriptions of device movement, and limit the generalizability of such findings within this thesis.
Resumo:
The aim of the research project was to gain d complete and accurate accounting of the needs and deficiencies of materials selection and design data, with particular attention given to the feasibility of a computerised materials selection system that would include application analysis, property data and screening techniques. The project also investigates and integrates the three major aspects of materials resources, materials selection and materials recycling. Consideration of the materials resource base suggests that, though our discovery potential has increased, geologic availability is the ultimate determinant and several metals may well become scarce at the same time, thus compounding the problem of substitution. With around 2- to 20- million units of engineering materials data, the use of a computer is the only logical answer for scientific selection of materials. The system developed at Aston is used for data storage, mathematical computation and output. The system enables programs to be run in batch and interactive (on-line) mode. The program with modification can also handle such variables as quantity of mineral resources, energy cost of materials and depletion and utilisation rates of strateqic materials. The work also carries out an in-depth study of copper recycling in the U.K. and concludes that, somewhere in the region of 2 million tonnes of copper is missing from the recycling cycle. It also sets out guidelines on product design and conservation policies from the recyclability point of view.
Resumo:
As mobile devices become increasingly diverse and continue to shrink in size and weight, their portability is enhanced but, unfortunately, their usability tends to suffer. Ultimately, the usability of mobile technologies determines their future success in terms of end-user acceptance and, thereafter, adoption and social impact. Widespread acceptance will not, however, be achieved if users’ interaction with mobile technology amounts to a negative experience. Mobile user interfaces need to be designed to meet the functional and sensory needs of users. Social and Organizational Impacts of Emerging Mobile Devices: Evaluating Use focuses on human-computer interaction related to the innovation and research in the design, evaluation, and use of innovative handheld, mobile, and wearable technologies in order to broaden the overall body of knowledge regarding such issues. It aims to provide an international forum for researchers, educators, and practitioners to advance knowledge and practice in all facets of design and evaluation of human interaction with mobile technologies.
Resumo:
Image collections are ever growing and hence visual information is becoming more and more important. Moreover, the classical paradigm of taking pictures has changed, first with the spread of digital cameras and, more recently, with mobile devices equipped with integrated cameras. Clearly, these image repositories need to be managed, and tools for effectively and efficiently searching image databases are highly sought after, especially on mobile devices where more and more images are being stored. In this paper, we present an image browsing system for interactive exploration of image collections on mobile devices. Images are arranged so that visually similar images are grouped together while large image repositories become accessible through a hierarchical, browsable tree structure, arranged on a hexagonal lattice. The developed system provides an intuitive and fast interface for navigating through image databases using a variety of touch gestures. © 2012 Springer-Verlag.
Resumo:
This paper examines the application of commercial and non-invasive electroencephalography (EEG)-based brain-computer (BCIs) interfaces with serious games. Two different EEG-based BCI devices were used to fully control the same serious game. The first device (NeuroSky MindSet) uses only a single dry electrode and requires no calibration. The second device (Emotiv EPOC) uses 14 wet sensors requiring additional training of a classifier. User testing was performed on both devices with sixty-two participants measuring the player experience as well as key aspects of serious games, primarily learnability, satisfaction, performance and effort. Recorded feedback indicates that the current state of BCIs can be used in the future as alternative game interfaces after familiarisation and in some cases calibration. Comparative analysis showed significant differences between the two devices. The first device provides more satisfaction to the players whereas the second device is more effective in terms of adaptation and interaction with the serious game.
Resumo:
Human-computer interaction is a growing field of study in which researchers and professionals aim to understand and evaluate the impact of new technologies on human behavior. With the integration of smart phones, tablets, and other portable devices into everyday life, there is a greater need to understand the influence of such technology on the human experience. Emerging Perspectives on the Design, Use, and Evaluation of Mobile and Handheld Devices is an authoritative reference source consisting of the latest scholarly research and theories from international experts and professionals on the topic of human-computer interaction with mobile devices. Featuring a comprehensive collection of chapters on critical topics in this dynamic field, this publication is an essential reference source for researchers, educators, students, and practitioners interested in the use of mobile and handheld devices and their impact on individuals and society as a whole. This publication features timely, research-based chapters pertaining to topics in the design and evaluation of smart devices including, but not limited to, app stores, category-based interfaces, gamified mobility applications, mobile interaction, mobile learning, pervasive multimodal applications, smartphone interaction, and social media use.
Resumo:
A significant body of research investigates the acceptance of computer-based support (including devices and applications ranging from e-mail to specialized clinical systems, like PACS) among clinicians. Much of this research has focused on measuring the usability of systems using characteristics related to the clarity of interactions and ease of use. We propose that an important attribute of any clinical computer-based support tool is the intrinsic motivation of the end-user (i.e. a clinician) to use the system in practice. In this paper we present the results of a study that investigated factors motivating medical doctors (MDs) to use computer-based support. Our results demonstrate that MDs value computer-based support, find it useful and easy to use, however, uptake is hindered by perceived incompetence, and pressure and tension associated with using technology.