5 resultados para Computation theory

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis is the development of an ultrasonic tomogram to provide outlines of cross-sections of the ulna in vivo. This instrument, used in conjunction with X-ray densitometry previously developed in this department, would provide actual bone mineral density to a high resolution. It was hoped that the accuracy of the plot obtained from the tomogram would exceed that of existing ultrasonic techniques by about five times. Repeat measurements with these instruments to follow bone mineral changes would involve very low X-ray doses. A theoretical study has been made of acoustic diffraction, using a geometrical transform applicable to the integration of three different Green's functions, for axisymmetric systems. This has involved the derivation of one of these in a form amenable to computation. It is considered that this function fits the boundary conditions occurring in medical ultrasonography more closely than those used previously. A three dimensional plot of the pressure field using this function has been made for a ring transducer, in addition to that for disc transducers using all three functions. It has been shown how the theory may be extended to investigate the nature and magnitude of the particle velocity, at any point in the field, for the three functions mentioned. From this study. a concept of diffraction fronts has been developed, which has made it possible to determine energy flow also in a diffracting system. Intensity has been displayed in a manner similar to that used for pressure. Plots have been made of diffraction fronts and energy flow direction lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study noisy computation in randomly generated k-ary Boolean formulas. We establish bounds on the noise level above which the results of computation by random formulas are not reliable. This bound is saturated by formulas constructed from a single majority-like gate. We show that these gates can be used to compute any Boolean function reliably below the noise bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of recent studies have investigated the introduction of decoherence in quantum walks and the resulting transition to classical random walks. Interestingly,it has been shown that algorithmic properties of quantum walks with decoherence such as the spreading rate are sometimes better than their purely quantum counterparts. Not only quantum walks with decoherence provide a generalization of quantum walks that naturally encompasses both the quantum and classical case, but they also give rise to new and different probability distribution. The application of quantum walks with decoherence to large graphs is limited by the necessity of evolving state vector whose sizes quadratic in the number of nodes of the graph, as opposed to the linear state vector of the purely quantum (or classical) case. In this technical report,we show how to use perturbation theory to reduce the computational complexity of evolving a continuous-time quantum walk subject to decoherence. More specifically, given a graph over n nodes, we show how to approximate the eigendecomposition of the n2×n2 Lindblad super-operator from the eigendecomposition of the n×n graph Hamiltonian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier–Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager–Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherWe adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.