40 resultados para Compression Metric

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior properties of ferritic/martensitic steels in a radiation environment (low swelling, low activation under irradiation and good corrosion resistance) make them good candidates for structural parts in future reactors and spallation sources. While it cannot substitute for true reactor experiments, irradiation by charged particles from accelerators can reduce the number of reactor experiments and support fundamental research for a better understanding of radiation effects in materials. Based on the nature of low energy accelerator experiments, only a small volume of material can be uniformly irradiated. Micro and nanoscale post irradiation tests thus have to be performed. We show here that nanoindentation and micro-compression testing on T91 and HT-9 stainless steel before and after ion irradiation are useful methods to evaluate the radiation induced hardening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The matched filter detector is well known as the optimum detector for use in communication, as well as in radar systems for signals corrupted by Additive White Gaussian Noise (A.W.G.N.). Non-coherent F.S.K. and differentially coherent P.S.K. (D.P.S.K.) detection schemes, which employ a new approach in realizing the matched filter processor, are investigated. The new approach utilizes pulse compression techniques, well known in radar systems, to facilitate the implementation of the matched filter in the form of the Pulse Compressor Matched Filter (P.C.M.F.). Both detection schemes feature a mixer- P.C.M.F. Compound as their predetector processor. The Compound is utilized to convert F.S.K. modulation into pulse position modulation, and P.S.K. modulation into pulse polarity modulation. The mechanisms of both detection schemes are studied through examining the properties of the Autocorrelation function (A.C.F.) at the output of the P.C.M.F.. The effects produced by time delay, and carrier interference on the output A.C.F. are determined. Work related to the F.S.K. detection scheme is mostly confined to verifying its validity, whereas the D.P.S.K. detection scheme has not been reported before. Consequently, an experimental system was constructed, which utilized combined hardware and software, and operated under the supervision of a microprocessor system. The experimental system was used to develop error-rate models for both detection schemes under investigation. Performances of both F. S. K. and D.P. S. K. detection schemes were established in the presence of A. W. G. N. , practical imperfections, time delay, and carrier interference. The results highlight the candidacy of both detection schemes for use in the field of digital data communication and, in particular, the D.P.S.K. detection scheme, which performed very close to optimum in a background of A.W.G.N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image processing is exploited in many diverse applications but the size of digital images places excessive demands on current storage and transmission technology. Image data compression is required to permit further use of digital image processing. Conventional image compression techniques based on statistical analysis have reached a saturation level so it is necessary to explore more radical methods. This thesis is concerned with novel methods, based on the use of fractals, for achieving significant compression of image data within reasonable processing time without introducing excessive distortion. Images are modelled as fractal data and this model is exploited directly by compression schemes. The validity of this is demonstrated by showing that the fractal complexity measure of fractal dimension is an excellent predictor of image compressibility. A method of fractal waveform coding is developed which has low computational demands and performs better than conventional waveform coding methods such as PCM and DPCM. Fractal techniques based on the use of space-filling curves are developed as a mechanism for hierarchical application of conventional techniques. Two particular applications are highlighted: the re-ordering of data during image scanning and the mapping of multi-dimensional data to one dimension. It is shown that there are many possible space-filling curves which may be used to scan images and that selection of an optimum curve leads to significantly improved data compression. The multi-dimensional mapping property of space-filling curves is used to speed up substantially the lookup process in vector quantisation. Iterated function systems are compared with vector quantisers and the computational complexity or iterated function system encoding is also reduced by using the efficient matching algcnithms identified for vector quantisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse compression techniques originated in radar.The present work is concerned with the utilization of these techniques in general, and the linear FM (LFM) technique in particular, for comnunications. It introduces these techniques from an optimum communications viewpoint and outlines their capabilities.It also considers the candidacy of the class of LFM signals for digital data transmission and the LFM spectrum. Work related to the utilization of LFM signals for digital data transmission has been mostly experimental and mainly concerned with employing two rectangular LFM pulses (or chirps) with reversed slopes to convey the bits 1 and 0 in an incoherent node.No systematic theory for LFM signal design and system performance has been available. Accordingly, the present work establishes such a theory taking into account coherent and noncoherent single-link and multiplex signalling modes. Some new results concerning the slope-reversal chirp pair are obtained. The LFM technique combines the typical capabilities of pulse compression with a relative ease of implementation. However, these merits are often hampered by the difficulty of handling the LFM spectrum which cannot generally be expressed closed-form. The common practice is to obtain a plot of this spectrum with a digital computer for every single set of LFM pulse parameters.Moreover, reported work has been Justly confined to the spectrum of an ideally rectangular chirp pulse with no rise or fall times.Accordingly, the present work comprises a systerratic study of the LFM spectrum which takes the rise and fall time of the chirp pulse into account and can accommodate any LFM pulse with any parameters.It· formulates rather simple and accurate prediction criteria concerning the behaviour of this spectrum in the different frequency regions. These criteria would facilitate the handling of the LFM technique in theory and practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compaction behaviour of powders with soft and hard components is of particular interest to the paint processing industry. Unfortunately, at the present time, very little is known about the internal mechanisms within such systems and therefore suitable tests are required to help in the interpretative process. The TRUBAL, Distinct Element Method (D.E.M.) program was the method of investigation used in this study. Steel (hard) and rubber (soft) particles were used in the randomly-generated, binary assemblies because they provided a sharp contrast in physical properties. For reasons of simplicity, isotropic compression of two-dimensional assemblies was also initially considered. The assemblies were first subject to quasi-static compaction, in order to define their behaviour under equilibrium conditions. The stress-strain behaviour of the assemblies under such conditions was found to be adequately described by a second-order polynomial expansion. The structural evolution of the simulation assemblies was also similar to that observed for real powder systems. Further simulation tests were carried out to investigate the effects of particle size on the compaction behaviour of the two-dimensional, binary assemblies. Later work focused on the quasi-static compaction behaviour of three-dimensional assemblies, because they represented more realistic particle systems. The compaction behaviour of the assemblies during the simulation experiments was considered in terms of percolation theory concepts, as well as more familiar macroscopic and microstructural parameters. Percolation theory, which is based on ideas from statistical physics, has been found to be useful in the interpretation of the mechanical behaviour of simple, elastic lattices. However, from the evidence of this study, percolation theory is also able to offer a useful insight into the compaction behaviour of more realistic particle assemblies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small scale laboratory experiments, in which the specimen is considered to represent an element of soil in the soil mass, are essential to the evolution of fundamental theories of mechanical behaviour. In this thesis, plane strain and axisymmetric compression tests, performed on a fine sand, are reported and the results are compared with various theoretical predictions. A new apparatus is described in which cuboidal samples can be tested in either axisymmetric compression or plane strain. The plane strain condition is simulated either by rigid side platens, in the conventional manner, or by flexible side platens which also measure the intermediate principal stress. Close control of the initial porosity of the specimens is achieved by a vibratory method of sample preparation. The strength of sand is higher in plane strain than in axisymmetric compression, and the strains required to mobilize peak strength are much smaller. The difference between plane strain and axisymmetric compression behaviour is attributed to the restrictions on particle movement enforced by the plane strain condition; this results in an increase in the frictional component of shear strength. The stress conditions at failure in plane strain, including the intermediate principal stress, are accurately predicted by a theory based on the stress- dilatancy interpretation of Mohr's circles. Detailed observations of rupture modes are presented and measured rupture plane inclinations are predicted by the stress-dilatancy theory. Although good correlation with the stress-dilatancy theory is obtained during virgin loading, in both axisymmetric compression and plane strain, the stress-dilatancy rule is only obeyed during reloading if the specimen has been unloaded to approximate ambient stress conditions. The shape of the stress-strain curves during pre-peak deformation, in both plane strain and axisymmetric compression, is accurately described bv a combined parabolic-hyperbolic specification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcompression specimens, 10–15 µm in diameter by 20–30 µm in height, were produced from individual parent grains in a polycrystalline U–13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress–strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically demonstrate a new fiber laser architecture supporting spectral compression of negatively chirped pulses in passive normally dispersive fiber. Such a process is beneficial for improving the energy efficiency of the cavity as it prevents narrow spectral filtering from being highly dissipative. The proposed laser design provides an elegant way of generating transform-limited picosecond pulses. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard reference clinical score quantifying average Parkinson's disease (PD) symptom severity is the Unified Parkinson's Disease Rating Scale (UPDRS). At present, UPDRS is determined by the subjective clinical evaluation of the patient's ability to adequately cope with a range of tasks. In this study, we extend recent findings that UPDRS can be objectively assessed to clinically useful accuracy using simple, self-administered speech tests, without requiring the patient's physical presence in the clinic. We apply a wide range of known speech signal processing algorithms to a large database (approx. 6000 recordings from 42 PD patients, recruited to a six-month, multi-centre trial) and propose a number of novel, nonlinear signal processing algorithms which reveal pathological characteristics in PD more accurately than existing approaches. Robust feature selection algorithms select the optimal subset of these algorithms, which is fed into non-parametric regression and classification algorithms, mapping the signal processing algorithm outputs to UPDRS. We demonstrate rapid, accurate replication of the UPDRS assessment with clinically useful accuracy (about 2 UPDRS points difference from the clinicians' estimates, p < 0.001). This study supports the viability of frequent, remote, cost-effective, objective, accurate UPDRS telemonitoring based on self-administered speech tests. This technology could facilitate large-scale clinical trials into novel PD treatments.