11 resultados para Compound forming systems
em Aston University Research Archive
Resumo:
The microscopic origin of the intermediate phase in two prototypical covalently bonded AxB1-x network glass forming systems, where A=Ge or Si, B=Se, and 0=x=1, was investigated by combining neutron diffraction with first-principles molecular-dynamics methods. Specifically, the structure of glassy GeSe4 and SiSe4 was examined, and the calculated total structure factor and total pair-correlation function for both materials are in good agreement with experiment. The structure of both glasses differs markedly from a simple model comprising undefective AB4 corner-sharing tetrahedra in which all A atoms are linked by B2 dimers. Instead, edge-sharing tetrahedra occur and the twofold coordinated Se atoms form three distinct structural motifs, namely, Se-Se2, Se-SeGe (or Se-SeSi), and Se-Ge2 (or Se-Si2). This identifies several of the conformations that are responsible for the structural variability in GexSe1-x and SixSe1-x glasses, a quantity that is linked to the finite width of the intermediate phase window.
Resumo:
The relation between the fragility of glass-forming systems, a parameter which describes many of their key physical characteristics, and atomic scale structure is investigated by using neutron diffraction to measure the topological and chemical ordering for germania, or GeO2, which is an archetypal strong glass former. We find that the ordering for this and other tetrahedral network-forming glasses at distances greater than the nearest neighbor can be rationalized in terms of an interplay between the relative importance of two length scales. One of these is associated with an intermediate range, the other with an extended range and, with increasing glass fragility, it is the extended range ordering which dominates.
Resumo:
Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0219686703000228
Resumo:
This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.
Resumo:
Hard real-time systems are a class of computer control systems that must react to demands of their environment by providing `correct' and timely responses. Since these systems are increasingly being used in systems with safety implications, it is crucial that they are designed and developed to operate in a correct manner. This thesis is concerned with developing formal techniques that allow the specification, verification and design of hard real-time systems. Formal techniques for hard real-time systems must be capable of capturing the system's functional and performance requirements, and previous work has proposed a number of techniques which range from the mathematically intensive to those with some mathematical content. This thesis develops formal techniques that contain both an informal and a formal component because it is considered that the informality provides ease of understanding and the formality allows precise specification and verification. Specifically, the combination of Petri nets and temporal logic is considered for the specification and verification of hard real-time systems. Approaches that combine Petri nets and temporal logic by allowing a consistent translation between each formalism are examined. Previously, such techniques have been applied to the formal analysis of concurrent systems. This thesis adapts these techniques for use in the modelling, design and formal analysis of hard real-time systems. The techniques are applied to the problem of specifying a controller for a high-speed manufacturing system. It is shown that they can be used to prove liveness and safety properties, including qualitative aspects of system performance. The problem of verifying quantitative real-time properties is addressed by developing a further technique which combines the formalisms of timed Petri nets and real-time temporal logic. A unifying feature of these techniques is the common temporal description of the Petri net. A common problem with Petri net based techniques is the complexity problems associated with generating the reachability graph. This thesis addresses this problem by using concurrency sets to generate a partial reachability graph pertaining to a particular state. These sets also allows each state to be checked for the presence of inconsistencies and hazards. The problem of designing a controller for the high-speed manufacturing system is also considered. The approach adopted mvolves the use of a model-based controller: This type of controller uses the Petri net models developed, thus preservIng the properties already proven of the controller. It. also contains a model of the physical system which is synchronised to the real application to provide timely responses. The various way of forming the synchronization between these processes is considered and the resulting nets are analysed using concurrency sets.
Resumo:
The aim of the investigation was to study the problem of colonization of shipboard fuel systems and to examine the effect of a number of environmental factors on microbial growth and survival in order to find potential preservative treatments. A variety of microbial species were isolated from samples taken from fuel storage tanks. Bacteria were more numerous than yeasts or fungi and most microorganisms were found at the fuel/water interface. 1he salinity, pH and phosphate concentration of some water bottoms were characteristic of sea water. Others were brackish, acidic and varied in phosphate content. Microorganisms were cultured under a number of environmental conditions. After prolonged incubation, the inoculum size had no effect on the final biomass of Cladosporium resinae but the time required to achieve the final mass decreased with increasing spore number. Undecane supported better growth of the fungus than diesel fuel and of four types of diesel fuel, two allowed more profuse growth. With sea water as the aqueous phase, a number of isolates were inhibited but the addition of nutrients allowed the development of many of the organisms. Agitation increased the growth of C. resinae on glucose but inhibited it on hydrocarbons. The optimum temperature fgr growth of C. resinae on surface culture lay between 25º C and 30º C and growth was evident at 5º C but not at 45º C. In aqueous suspension, 90% of spores were inactivated in around 60 hours at 45ºC and the same proportion of spores of C. resinae and Penicillium corylophilum were destroyed after about 30 seconds at 65ºC. The majority of bacteria and all yeasts in a water bottom sample were killed within 10 seconds at this temperature. An increase in the concentration of an organo-boron compound caused more rapid inactivation of C. resinae spores and raising the temperature from 25ºC to 45°C significantly enhanced the potency of the biocide.
Resumo:
This system is concerned with the design and implementation of a community health information system which fulfils some of the local needs of fourteen nursing and para-medical professions in a district health authority, whilst satisfying the statutory requirements of the NHS Korner steering group for those professions. A national survey of community health computer applications, documented in the form of an applications register, shows the need for such a system. A series of general requirements for an informations systems design methodology are identified, together with specific requirements for this problem situation. A number of existing methodologies are reviewed, but none of these were appropriate for this application. Some existing approaches, tools and techniques are used to define a more suitable methodology. It is unreasonable to rely on one single general methodology for all types of application development. There is a need for pragmatism, adaptation and flexibility. In this research, participation in the development stages by those who will eventually use the system was thought desirable. This was achieved by forming a representative design group. Results would seem to show a highly favourable response from users to this participation which contributed to the overall success of the system implemented. A prototype was developed for the chiropody and school nursing staff groups of Darlington health authority, and evaluations show that a significant number of the problems and objectives of those groups have been successfully addressed; the value of community health information has been increased; and information has been successfully fed back to staff and better utilised.
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.
Resumo:
With careful calculation of signal forwarding weights, relay nodes can be used to work collaboratively to enhance downlink transmission performance by forming a virtual multiple-input multiple-output beamforming system. Although collaborative relay beamforming schemes for single user have been widely investigated for cellular systems in previous literatures, there are few studies on the relay beamforming for multiusers. In this paper, we study the collaborative downlink signal transmission with multiple amplify-and-forward relay nodes for multiusers in cellular systems. We propose two new algorithms to determine the beamforming weights with the same objective of minimizing power consumption of the relay nodes. In the first algorithm, we aim to guarantee the received signal-to-noise ratio at multiusers for the relay beamforming with orthogonal channels. We prove that the solution obtained by a semidefinite relaxation technology is optimal. In the second algorithm, we propose an iterative algorithm that jointly selects the base station antennas and optimizes the relay beamforming weights to reach the target signal-to-interference-and-noise ratio at multiusers with nonorthogonal channels. Numerical results validate our theoretical analysis and demonstrate that the proposed optimal schemes can effectively reduce the relay power consumption compared with several other beamforming approaches. © 2012 John Wiley & Sons, Ltd.