24 resultados para Composite (steel-concrete) tubular footbridge
em Aston University Research Archive
Resumo:
An investigation was undertaken to study the effect of poor curing simulating hot climatic conditions and remedies on the durability of steel in concrete. Three different curing environments were used i.e. (1) Saturated Ca(OH)2 solution at 20°C, (2) Saturated Ca(OH)2 solution at 50°C and (3) Air at 50°C at 30% relative humidity. The third curing condition corresponding to the temperature and relative humidity typical of Middle Eastern Countries. The nature of the hardened cement paste matrix, cured under the above conditions was studied by means of Mercury Intrusion Porosimetry for measuring pore size distribution. The results were represented as total pore volume and initial pore entry diameter. The Scanning Electron Microscope was used to look at morphological changes during hydration, which were compared to the Mercury Intrusion Porosimetry results. X-ray defraction and Differential Thermal Analysis techniques were also employed for looking at any phase transformations. Polymer impregnation was used to reduce the porosity of the hardened cement pastes, especially in the case of the poorly cured samples. Carbonation rates of unimpregnated and impregnated cements were determined. Chloride diffusion studies were also undertaken to establish the effect of polymer impregnation and blending of the cements. Finally the corrosion behaviour of embedded steel bars was determined by the technique of Linear Polarisation. The steel was embedded in both untreated and polymer impregnated hardened cement pastes placed in either a solution containing NaCl or an environmental cabinet which provided carbonation at 40°C and 50% relative humidity.
Resumo:
Sodium formate, potassium acetate and a mixture of calcium and magnesium acetate (CMA) have all been identified as effective de-icing agents. In this project an attempt has been made to elucidate potentially deleterious effects of these substances on the durability of reinforced concrete. Aspects involving the corrosion behaviour of embedded steel along with the chemical and physical degradation of the cementitious matrix were studied. Ionic diffusion characteristics of deicer/pore solution systems in hardened cement paste were also studied since rates of ingress of deleterious agents into cement paste are commonly diffusion-controlled. It was found that all the compounds tested were generally non-corrosive to embedded steel, however, in a small number of cases potassium acetate did cause corrosion. Potassium acetate was also found to cause cracking in concrete and cement paste samples. CMA appeared to degrade hydrated cement paste although this was apparently less of a problem when commercial grade CMA was used in place of the reagent grade chemical. This was thought to be due to the insoluble material present in the commercial formulation forming a physical barrier between the concrete and the de-icing solution. With the test regimes used sodium formate was not seen to have any deleterious effect on the integrity of reinforced concrete. As a means of restoring the corrosion protective character of chloride-contaminated concrete the process of electrochemical chloride removal has been previously developed. Potential side-effects of this method and the effect of external electrolyte composition on chloride removal efficiency were investigated. It was seen that the composition of the external electrolyte has a significant effect on the amount of chloride removed. It was also found that, due to alterations to the composition of the C3A hydration reaction products, it was possible to remove bound chloride as well as that in the pore solution. The use of an external electrolyte containing lithium ions was also tried as a means of preventing cathodically-induced alkali-silica reaction in concretes containing potentially reactive aggregates. The results obtained were inconclusive and further practical development of this approach is needed.
Resumo:
A study of several chemical and electrochemical factors which affect the behaviour of embedded steel in cement pastes and concrete has been made. The effects of internal and external sources of chloride ions on the pore solution chemistry of Portland cement pastes, with and without additions of anodic corrosion inhibitors, have been studied using a pore solution expression device which has enabled samples of pore solution to be expressed from hardened cement pastes and analysed for various ionic species. Samples of pure alite and tricalcium aluminate have been prepared and characterised with respect to morphology, free lime content and fineness. Kinetics of diffusion of chloride ions in hardened pastes of alite and alite blended with tricalcium aluminate have been investigated and an activation energy obtained for the diffusion process in alite. The pore structures of the hardened pastes and the chloride ion binding capacity of alite have also been determined. Concrete cylinders containing embedded steel with four different surface conditions were exposed to various environments. The electrochemical behaviour of the steel was monitored during the period of exposure by means of rest potential measurements and the steel corrosion products analysed before and after being embedded. An examination was made of the nature of the interfacial zones produced between the embedded steel and cement. Rest potential measurements were monitored for steel embedded in alite paste in the presence of chloride ions and cement paste containing various levels of inhibitors in combination with chloride ions. In the latter case the results were supported by polarisation resistance determinations.
Resumo:
Potentiostatically induced current transients obtained on a range of reinforced concrete specimens were analysed to give estimates of the polarisation resistance and interfacial capacitance. The polarisation resistance was compared with the values obtained using more conventional DC methods of analysis and, while it was consistently lower, it was within the error normally attributed to the polarisation resistance method of corrosion rate determination. The interfacial capacitance values determined increased from 0.44 F m -2 for passive steel (polarisation resistance of 132 Ω m 2) to 26.5 F m -2 for active steel (polarisation resistance of 0.34 Ω m 2). This has a dominant effect on the time required for potentiostatically induced current transients to reach a steady state with a longer time being required by actively corroding steel. By contrast the potential decay time constants describing galvanostatically or coulostatically induced potential transients decrease with an increase in corrosion rate and values less than 25 s for active specimens and greater than 40 s for passive specimens were determined in this work. © 1997 Elsevier Science Ltd.
Resumo:
The object of this thesis is to develop a method for calculating the losses developed in steel conductors of circular cross-section and at temperatures below 100oC, by the direct passage of a sinusoidally alternating current. Three cases are considered. 1. Isolated solid or tubular conductor. 2. Concentric arrangement of tube and solid return conductor. 3. Concentric arrangement of two tubes. These cases find applications in process temperature maintenance of pipelines, resistance heating of bars and design of bus-bars. The problems associated with the non-linearity of steel are examined. Resistance heating of bars and methods of surface heating of pipelines are briefly described. Magnetic-linear solutions based on Maxwell's equations are critically examined and conditions under which various formulae apply investigated. The conditions under which a tube is electrically equivalent to a solid conductor and to a semi-infinite plate are derived. Existing solutions for the calculation of losses in isolated steel conductors of circular cross-section are reviewed, evaluated and compared. Two methods of solution are developed for the three cases considered. The first is based on the magnetic-linear solutions and offers an alternative to the available methods which are not universal. The second solution extends the existing B/H step-function approximation method to small diameter conductors and to tubes in isolation or in a concentric arrangement. A comprehensive experimental investigation is presented for cases 1 and 2 above which confirms the validity of the proposed methods of solution. These are further supported by experimental results reported in the literature. Good agreement is obtained between measured and calculated loss values for surface field strengths beyond the linear part of the d.c. magnetisation characteristic. It is also shown that there is a difference in the electrical behaviour of a small diameter conductor or thin tube under resistance or induction heating conditions.
Resumo:
Much research is currently centred on the detection of damage in structures using vibrational data. The work presented here examined several areas of interest in support of a practical technique for identifying and locating damage within bridge structures using apparent changes in their vibrational response to known excitation. The proposed goals of such a technique included the need for the measurement system to be operated on site by a minimum number of staff and that the procedure should be as non-invasive to the bridge traffic-flow as possible. Initially the research investigated changes in the vibrational bending characteristics of two series of large-scale model bridge-beams in the laboratory and these included ordinary-reinforced and post-tensioned, prestressed designs. Each beam was progressively damaged at predetermined positions and its vibrational response to impact excitation was analysed. For the load-regime utilised the results suggested that the infuced damage manifested itself as a function of the span of a beam rather than a localised area. A power-law relating apparent damage with the applied loading and prestress levels was then proposed, together with a qualitative vibrational measure of structural damage. In parallel with the laboratory experiments a series of tests were undertaken at the sites of a number of highway bridges. The bridges selected had differing types of construction and geometric design including composite-concrete, concrete slab-and-beam, concrete-slab with supporting steel-troughing constructions together with regular-rectangular, skewed and heavily-skewed geometries. Initial investigations were made of the feasibility and reliability of various methods of structure excitation including traffic and impulse methods. It was found that localised impact using a sledge-hammer was ideal for the purposes of this work and that a cartridge `bolt-gun' could be used in some specific cases.
Resumo:
Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.
Resumo:
Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.
Resumo:
Four corrosion inhibitors namely sodium nitrite, sodium monofluorophosphate, ethanolamine and an alkanolamine-based mixture were studied by immersing mild steel bars for 42 days in model electrolytes of varied pH and chloride concentration which were intended to simulate the pore solution phase present within carbonated and/or chloride-contaminated concrete. Site trials were carried out on sodium monofluorophosphate and the alkanolamine-based inhibitor to study their depth of penetration into concrete. The influence of various carbonating atmospheres on the pore solution chemistry and microstructure of hydrated cement paste was investigated. Physical realkalisation of carbonated cement paste and a calcium nitrite-based corrosion rehabilitation system for chloride-contaminated cement paste were investigated by monitoring ionic transport within the pore solution phase of laboratory specimens. The main findings were as follows: 1,Sodium nitrite, sodium monofluorophosphate, ethanolamine and the alkanolamine-based mixture all behaved as passivating anodic inhibitors of steel corrosion in air-saturated aqueous solutions of varied pH and chloride concentration. 2,Sodium monofluorophosphate failed to penetrate significantly into partially carbonated site concrete when applied as recommended by the supplier. Phosphate and fluoride penetrated 5mm into partially carbonated site concrete treated with sodium monofluorophosphate. 3,The ethanolamine component of the alkanolamine-based inhibitor was found to have penetrated significant depths into partially carbonated site concrete. 4,Carbonating hydrated cement paste over saturated solutions of sodium nitrite resulted in significant concentrations of nitrite in the pore solution of the carbonated paste. Saturated solutions of sodium chloride, ammonium nitrate, magnesium nitrate and sodium dichromate were investigated and identified as alternatives for controlling the relative humidity of the carbonating environment. 5,Hardened carbonated cement paste can by physically realkalised to a limited extent due to the diffusion of hydroxyl ions under saturated conditions. A substantial proportion of the hydroxyl ions that diffused into the carbonated cement paste however, became bound into the cement matrix. Hydroxyl ion concentrations remained below 5mmol/l within the pore solution of the realkalised cement paste. 6, Nitrite ions penetrated significant distances by diffusion within the pore solution of saturated uncarbonated hydrated cement paste.
Resumo:
In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.
Resumo:
Presented in this thesis are original theoretical solutions for the determination of the ultimate strength in bending and torsion for: a) Plain concrete members. (b) Concrete members reinforced with longitudinal steel only. (c) Concrete members reinforced with longitudinal and transverse steel at yield. (d) Concrete members reinforced with longitudinal and transverse steel, where partial yielding and non yielding occurs. The theories are compared with available experimental results and show reasonable agreement.
Resumo:
This thesis examines experimentally and theoretically the behaviour and ultimate strength of rectangular reinforced concrete members under combined torsion, shear and bending. The experimental investigation consists of the test results of 38 longitudinally and transversely reinforced concrete beams subjected to combined loads, ten beams of which were tested under pure torsion and self-weight. The behaviour of each test beam from application of the first increment of load until failure is presented. The effects of concrete strength, spacing of the stirrups, the amount of longitudinal steel and the breadth of the section on the ultimate torsional capacity are investigated. Based on the skew-bending mechanism, compatibility, and linear stress-strain relationship for the concrete and the steel, simple rational equations are derived for the three principal modes of failure for the following four types of failure observed in the tests: TYPE I Yielding the reinforcement, at failure, before crushing the concrete. TYPE II Yielding of the web steel only, at failure, before crushing the concrete. TYPE III Yielding of the longitudinal steel only, at failure, before crushing the concrete. TYPE IV Crushing of the concrete, at failure, before yielding of any of the reinforcement.