12 resultados para Competing risks, Estimation of predator mortality, Over dispersion, Stochastic modeling
em Aston University Research Archive
Resumo:
We present experimental results of 10 Gbit/s, 20 ps soliton data transmission over standard fibre, dispersion compensated to 0.5 ps/nm/km. Acceptable Q values were measured to a distance of 2022 km.
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulsed data stream over dispersion (non-shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
Error-free transmission of a single polarization optical time division multiplexed 40 Gbit/s dispersion managed pulse data stream over 1009 km has been achieved in dispersion-compensated standard (non-dispersion shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
We present experimental results of 10 Gbit/s, 20 ps soliton data transmission over standard fibre, dispersion compensated to 0.5 ps/nm/km. Acceptable Q values were measured to a distance of 2022 km.
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulsed data stream over dispersion (non-shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
Error free transmission of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulse data stream over 1009 km has been achieved in a dispersion compensated standard (non-dispersion shifted) fibre. This distance is twice the previous record at this data rate, and was acheived through techniques developed for dispersion managed soliton transmission.
Estimation of productivity in Korean electric power plants:a semiparametric smooth coefficient model
Resumo:
This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to compare performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implication for generation policy in Korea as outlined in this study.
Estimation of productivity in Korean electric power plants:a semiparametric smooth coefficient model
Resumo:
This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to assess the performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implications for generation policy in Korea as outlined in this study.
Resumo:
Technology changes rapidly over years providing continuously more options for computer alternatives and making life easier for economic, intra-relation or any other transactions. However, the introduction of new technology “pushes” old Information and Communication Technology (ICT) products to non-use. E-waste is defined as the quantities of ICT products which are not in use and is bivariate function of the sold quantities, and the probability that specific computers quantity will be regarded as obsolete. In this paper, an e-waste generation model is presented, which is applied to the following regions: Western and Eastern Europe, Asia/Pacific, Japan/Australia/New Zealand, North and South America. Furthermore, cumulative computer sales were retrieved for selected countries of the regions so as to compute obsolete computer quantities. In order to provide robust results for the forecasted quantities, a selection of forecasting models, namely (i) Bass, (ii) Gompertz, (iii) Logistic, (iv) Trend model, (v) Level model, (vi) AutoRegressive Moving Average (ARMA), and (vii) Exponential Smoothing were applied, depicting for each country that model which would provide better results in terms of minimum error indices (Mean Absolute Error and Mean Square Error) for the in-sample estimation. As new technology does not diffuse in all the regions of the world with the same speed due to different socio-economic factors, the lifespan distribution, which provides the probability of a certain quantity of computers to be considered as obsolete, is not adequately modeled in the literature. The time horizon for the forecasted quantities is 2014-2030, while the results show a very sharp increase in the USA and United Kingdom, due to the fact of decreasing computer lifespan and increasing sales.