1 resultado para Colombia. Presidente (2010-2014 : Santos Calderón)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. Full text Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improve­ment of III-nitride LED performance [1]. External quantum ef­ficiency ηe (EQE) provides integral information on the recom­bination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE ηi and LEE ηext at negligible car­rier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correla­tion between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, provid­ing an express tool for separate evaluation of IQE and LEE. We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE versus output power P and finding the power Pm corresponding to EQE maximum ηm enables comparing the measurements with the analytical rela­tionships ηi = Q/(Q+p1/2+p-1/2) ,p = P/Pm , and Q = B/(AC) 1/2 where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio ηm/ηe plotted as a function of p1/2 +p1-1/2 (see Fig.la) and then LEE calculated as ηext = ηm (Q+2)/Q . Experimental EQE as a function of normalized optical power p is shown in Fig. 1 b along with the analytical approximation based on the ABC­model. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. [I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. [2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure las­ers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. [3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. [4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. © 2014 IEEE.