2 resultados para Coherent State
em Aston University Research Archive
Resumo:
We report the existence of a kind of squeezing in photonic crystal fibers which is conceptually intermediate between four-wave-mixing-induced squeezing in which all the participant waves are monochromatic waves, and self-phase-modulation-induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasimonochromatic resonant radiation near a zero-group-velocity-dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot-noise level is predicted. © 2011 American Physical Society.
Resumo:
We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical communication systems. © 2012 American Physical Society.