60 resultados para Cognitive Radio Sensor Networks (CRSN)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive Radio has been proposed as a key technology to significantly improve spectrum usage in wireless networks by enabling unlicensed users to access unused resource. We present new algorithms that are needed for the implementation of opportunistic scheduling policies that maximize the throughput utilization of resources by secondary users, under maximum interference constraints imposed by existing primary users. Our approach is based on the Belief Propagation (BP) algorithm, which is advantageous due to its simplicity and potential for distributed implementation. We examine convergence properties and evaluate the performance of the proposed BP algorithms via simulations and demonstrate that the results compare favorably with a benchmark greedy strategy. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wireless ad hoc sensor networks, energy use is in many cases the most important constraint since it corresponds directly to operational lifetime. Topology management schemes such as GAF put the redundant nodes for routing to sleep in order to save the energy. The radio range will affect the number of neighbouring nodes, which collaborate to forward data to a base station or sink. In this paper we study a simple linear network and deduce the relationship between optimal radio range and traffic. We find that half of the power can be saved if the radio range is adjusted appropriately compared with the best case where equal radio ranges are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach—Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 ne-vHz at 7 Hz for a wavelength of 1535 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy consumption in wireless networks, and in particular in cellular mobile networks, is now of major concern in respect of their potential adverse impact upon the environment and their escalating operating energy costs. The recent phenomenal growth of data services in cellular mobile networks has exacerbated the energy consumption issue and is forcing researchers to address how to design future wireless networks that take into account energy consumption constraints. One fundamental approach to reduce energy consumption of wireless networks is to adopt new radio access architectures and radio techniques. The Mobile VCE (MVCE) Green Radio project, established in 2009, is considering such new architectural and technical approaches. This paper reports highlights the key research issues pursued in the MVCE Green Radio project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.15.4 standard is a relatively new standard designed for low power low data rate wireless sensor networks (WSN), which has a wide range of applications, e.g., environment monitoring, e-health, home and industry automation. In this paper, we investigate the problems of hidden devices in coverage overlapped IEEE 802.15.4 WSNs, which is likely to arise when multiple 802.15.4 WSNs are deployed closely and independently. We consider a typical scenario of two 802.15.4 WSNs with partial coverage overlapping and propose a Markov-chain based analytical model to reveal the performance degradation due to the hidden devices from the coverage overlapping. Impacts of the hidden devices and network sleeping modes on saturated throughput and energy consumption are modeled. The analytic model is verified by simulations, which can provide the insights to network design and planning when multiple 802.15.4 WSNs are deployed closely. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the localization problem in large-scale Underwater Wireless Sensor Networks (UWSNs). Unlike in the terrestrial positioning, the global positioning system (GPS) can not work efficiently underwater. The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the localization problem very challenging. Most current localization schemes are not well suitable for deep underwater environment. We propose a hierarchical localization scheme to address the challenging problems. The new scheme mainly consists of four types of nodes, which are surface buoys, Detachable Elevator Transceivers (DETs), anchor nodes and ordinary nodes. Surface buoy is assumed to be equipped with GPS on the water surface. A DET is attached to a surface buoy and can rise and down to broadcast its position. The anchor nodes can compute their positions based on the position information from the DETs and the measurements of distance to the DETs. The hierarchical localization scheme is scalable, and can be used to make balances on the cost and localization accuracy. Initial simulation results show the advantages of our proposed scheme. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently underwater sensor networks (UWSN) attracted large research interests. Medium access control (MAC) is one of the major challenges faced by UWSN due to the large propagation delay and narrow channel bandwidth of acoustic communications used for UWSN. Widely used slotted aloha (S-Aloha) protocol suffers large performance loss in UWSNs, which can only achieve performance close to pure aloha (P-Aloha). In this paper we theoretically model the performances of S-Aloha and P-Aloha protocols and analyze the adverse impact of propagation delay. According to the observation on the performances of S-Aloha protocol we propose two enhanced S-Aloha protocols in order to minimize the adverse impact of propagation delay on S-Aloha protocol. The first enhancement is a synchronized arrival S-Aloha (SA-Aloha) protocol, in which frames are transmitted at carefully calculated time to align the frame arrival time with the start of time slots. Propagation delay is taken into consideration in the calculation of transmit time. As estimation error on propagation delay may exist and can affect network performance, an improved SA-Aloha (denoted by ISA-Aloha) is proposed, which adjusts the slot size according to the range of delay estimation errors. Simulation results show that both SA-Aloha and ISA-Aloha perform remarkably better than S-Aloha and P-Aloha for UWSN, and ISA-Aloha is more robust even when the propagation delay estimation error is large. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study an area localization problem in large scale Underwater Wireless Sensor Networks (UWSNs). The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the underwater localization problem very challenging. Exact localization is very difficult for UWSNs in deep underwater environment. We propose a Mobile DETs based efficient 3D multi-power Area Localization Scheme (3D-MALS) to address the challenging problem. In the proposed scheme, the ideas of 2D multi-power Area Localization Scheme(2D-ALS) [6] and utilizing Detachable Elevator Transceiver (DET) are used to achieve the simplicity, location accuracy, scalability and low cost performances. The DET can rise and down to broadcast its position. And it is assumed that all the underwater nodes underwater have pressure sensors and know their z coordinates. The simulation results show that our proposed scheme is very efficient. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.