3 resultados para Code optimization
em Aston University Research Archive
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the ordered weight averaging (OWA) operators of decision-making units (DMUs). OWA was originally introduced by Yager (IEEE Trans Syst Man Cybern 18(1):183-190, 1988) has gained much interest among researchers, hence many applications such as in the areas of decision making, expert systems, data mining, approximate reasoning, fuzzy system and control have been proposed. On the other hand, the SAS is powerful software and it is capable of running various optimization tools such as linear and non-linear programming with all type of constraints. To facilitate the use of OWA operator by SAS users, a code was implemented. The SAS macro developed in this paper selects the criteria and alternatives from a SAS dataset and calculates a set of OWA weights. An example is given to illustrate the features of SAS/OWA software. © Springer-Verlag 2009.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.