23 resultados para Co-culture

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The airway epithelium is the first point of contact in the lung for inhaled material, including infectious pathogens and particulate matter, and protects against toxicity from these substances by trapping and clearance via the mucociliary escalator, presence of a protective barrier with tight junctions and initiation of a local inflammatory response. The inflammatory response involves recruitment of phagocytic cells to neutralise and remove and invading materials and is oftern modelled using rodents. However, development of valid in vitro airway epithelial models is of great importance due to the restrictions on animal studies for cosmetic compound testing implicit in the 7th amendment to the European Union Cosmetics Directive. Further, rodent innate immune responses have fundamental differences to human. Pulmonary endothelial cells and leukocytes are also involved in the innate response initiated during pulmonary inflammation. Co-culture models of the airways, in particular where epithelial cells are cultured at air liquid interface with the presence of tight junctions and differentiated mucociliary cells, offer a solution to this problem. Ideally validated models will allow for detection of early biomarkers of response to exposure and investigation into inflammatory response during exposure. This thesis describes the approaches taken towards developing an in vitro epithelial/endothelial cell model of the human airways and identification biomarkers of response to exposure to xenobiotics. The model comprised normal human primary microvascular endothelial cells and the bronchial epithelial cell line BEAS-2B or normal human bronchial epithelial cells. BEAS-2B were chosen as their characterisation at air liquid interface is limited but they are robust in culture, thereby predicted to provide a more reliable test system. Proteomics analysis was undertaken on challenged cells to investigate biomarkers of exposure. BEAS-2B morphology was characterised at air liquid interface compared with normal human bronchial epithelial cells. The results indicate that BEAS-2B cells at an air liquid interface form tight junctions as shown by expression of the tight junction protein zonula occludens-1. To this author’s knowledge this is the first time this result has been reported. The inflammatory response of BEAS-2B (measured as secretion of the inflammatory mediators interleukin-8 and -6) air liquid interface mono-cultures to Escherichia coli lipopolysaccharide or particulate matter (fine and ultrafine titanium dioxide) was comparable to published data for epithelial cells. Cells were also exposed to polymers of “commercial interest” which were in the nanoparticle range (and referred to particles hereafter). BEAS-2B mono-cultures showed an increased secretion of inflammatory mediators after challenge. Inclusion of microvascular endothelial cells resulted in protection against LPS- and particle- induced epithelial toxicity, measured as cell viability and inflammatory response, indicating the importance of co-cultures for investigations into toxicity. Two-dimensional proteomic analysis of lysates from particle-challenged cells failed to identify biomarkers of toxicity due to assay interference and experimental variability. Separately, decreased plasma concentrations of serine protease inhibitors, and the negative acute phase proteins transthyretin, histidine-rich glycoprotein and alpha2-HS glycoprotein were identified as potential biomarkers of methyl methacrylate/ethyl methacrylate/butylacrylate treatment in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes are essential for neuronal function and survival, so both cell types were included in a human neurotoxicity test-system to assess the protective effects of astrocytes on neurons, compared with a culture of neurons alone. The human NT2.D1 cell line was differentiated to form either a co-culture of post-mitotic NT2.N neuronal (TUJ1, NF68 and NSE positive) and NT2.A astrocytic (GFAP positive) cells (∼2:1 NT2.A:NT2.N), or an NT2.N mono-culture. Cultures were exposed to human toxins, for 4 h at sub-cytotoxic concentrations, in order to compare levels of compromised cell function and thus evidence of an astrocytic protective effect. Functional endpoints examined included assays for cellular energy (ATP) and glutathione (GSH) levels, generation of hydrogen peroxide (H2O2) and caspase-3 activation. Generally, the NT2.N/A co-culture was more resistant to toxicity, maintaining superior ATP and GSH levels and sustaining smaller significant increases in H2O2 levels compared with neurons alone. However, the pure neuronal culture showed a significantly lower level of caspase activation. These data suggest that besides their support for neurons through maintenance of ATP and GSH and control of H2O2 levels, following exposure to some substances, astrocytes may promote an apoptotic mode of cell death. Thus, it appears the use of astrocytes in an in vitro predictive neurotoxicity test-system may be more relevant to human CNS structure and function than neuronal cells alone. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims/hypothesis - Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods - Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results - Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p<0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation - The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue engineering of skin based on collagen:PCL biocomposites using a designed co-culture system is reported. The collagen:PCL biocomposites having collagen:PCL (w/w) ratios of 1:4, 1:8, and 1:20 have been proven to be biocompatible materials to support both adult normal human epidermal Keratinocyte (NHEK) and mouse 3T3 fibroblast growth in cell culture, respectively, by Dai, Coombes, et al. in 2004. Films of collagen:PCL biocomposites were prepared using non-crosslinking method by impregnation of lyophilized collagen mats with PCL/dichloromethane solutions followed by solvent evaporation. To mimic the dermal/epidermal structure of skin, the 1:20 collagen:PCL biocomposites were selected for a feasibility study of a designed co-culture technique that would subsequently be used for preparing fibroblast/biocomposite/keratinocyte skin models. A 55.3% increase in cell number was measured in the designed co-culture system when fibroblasts were seeded on both sides of a biocomposite film compared with cell culture on one surface of the biocomposite in the feasibility study. The co-culture of human keratinocytes and 3T3 fibroblasts on each side of the membrane was therefore studied using the same co-culture system by growing keratinocytes on the top surface of membrane for 3 days and 3T3 fibroblasts underneath the membrane for 6 days. Scanning electron microscopy (SEM) and immunohistochemistry assay revealed good cell attachment and proliferation of both human keratinocytes and 3T3 fibroblasts with these two types of cells isolated well on each side of the membrane. Using a modified co-culture technique, a co-cultured skin model presenting a confluent epidermal sheet on one side of the biocomposite film and fibroblasts populated on the other side of the film was developed successfully in co-culture system for 28 days under investigations by SEM and immunohistochemistry assay. Thus, the design of a co-culture system based on 1:20 (w/w) collagen:PCL biocomposite membranes for preparation of a bi-layered skin model with differentiated epidermal sheet was proven in principle. The approach to skin modeling reported here may find application in tissue engineering and screening of new pharmaceuticals. © 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The timeline imposed by recent worldwide chemical legislation is not amenable to conventional in vivo toxicity testing, requiring the development of rapid, economical in vitro screening strategies which have acceptable predictive capacities. When acquiring regulatory neurotoxicity data, distinction on whether a toxic agent affects neurons and/or astrocytes is essential. This study evaluated neurofilament (NF) and glial fibrillary acidic protein (GFAP) directed single-cell (S-C) ELISA and flow cytometry as methods for distinguishing cell-specific cytoskeletal responses, using the established human NT2 neuronal/astrocytic (NT2.N/A) co-culture model and a range of neurotoxic (acrylamide, atropine, caffeine, chloroquine, nicotine) and non-neurotoxic (chloramphenicol, rifampicin, verapamil) test chemicals. NF and GFAP directed flow cytometry was able to identify several of the test chemicals as being specifically neurotoxic (chloroquine, nicotine) or astrocytoxic (atropine, chloramphenicol) via quantification of cell death in the NT2.N/A model at cytotoxic concentrations using the resazurin cytotoxicity assay. Those neurotoxicants with low associated cytotoxicity are the most significant in terms of potential hazard to the human nervous system. The NF and GFAP directed S-C ELISA data predominantly demonstrated the known neurotoxicants only to affect the neuronal and/or astrocytic cytoskeleton in the NT2.N/A cell model at concentrations below those affecting cell viability. This report concluded that NF and GFAP directed S-C ELISA and flow cytometric methods may prove to be valuable additions to an in vitro screening strategy for differentiating cytotoxicity from specific neuronal and/or astrocytic toxicity. Further work using the NT2.N/A model and a broader array of toxicants is appropriate in order to confirm the applicability of these methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Human islet transplantation would offer a less invasive and more physiological alternative than whole pancreas transplantation and insulin injections respectively for the treatment of diabetes mellitus if islet graft survival can be improved. Initial recipient post-transplant insulin independence declines to <10% after 5 years. Factors contributing to graft failure include enzymatic disruption of the islet microenvironment during isolation, diabetogenic effects of immunosuppressants and metabolic stress resulting from slow revascularisation. Aims: To investigate the effect of co-culture in both static (SC) and rotational culture (RC) of BRINBDII beta-cells (Dl1) and human umbilical vein endothelial cells (HUVEC) on Dl1 insulin secretion; and the effect of a thiazolidinedione (TZD) on DII function and HUVEC proliferation. To assess the effect of culture media, SC, RC and a TZD on human islet morphology, insulin secretion and VEGF production. To initiate in vivo protocol development for assessment of revascularisation of human islet grafts. Methods: D11 cells were cultured +/-TZD and co-cultured with HUVEC +/-TZD in SC and RC. Dl1 insulin secretion was induced by static incubation with low glucose (1.67mM), high glucose (l6.7mM: and high glucose with 10mM theophylline (G+T) and determined by ELISA. HUVEC were cultured +/-TZD in SC and RC and proliferation was assessed by ATP luminescence assay and VEGF ELISA. D II and HUVEC morphology was determined by immunocytochemistry. Human islets were cultured in SC and RC in various media +/-TZD. Insulin secretion was determined as above and VEGF production by fluorescence immunocytochemistry (FI) and ELISA. Revascularisation of islet grafts was assessed by vascular corrosion cast and FI. Results: Dll cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and further improved by adding 10mM TZD. Untreated Dll/HUVEC co-cultures displayed significantly increased insulin secretion in response to 16.7mM and G+T over basal, again enhanced by RC and improved with 10mM TZD. 10mM TZD significantly increased HUVEC proliferation over control. Human islets maintained in medium 199 (mI99) in SC and RC exhibited comparable maintenance of morphology and insulin secretory profiles compared to islets maintained in RPMI, endothelial growth media and dedicated islet medium Miami# I. All cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and in certain instances further improved by adding 25mM TZD. TZD increased VEGF production and release as determined by ELISA. Post-implant vascular corrosion casts of mouse kidneys analysed by x-ray micro tomography indicates a possible TZD enhancement of microvessel growth via VEGF upregulation. Conclusions: D II /HUVEC co-culture in SC or RC does not alter the morphology of either cell type and supports D 11 function. TZD improves 0 I I and D I I/HUVEC SC and RC co-culture insulin secretion while increasing HUVEC proliferation. Human islet RC supports islet functional viability and structural integrity compared to SC while the addition of TZD occasionally further improves secretagogue induced insulin secretion. Expensive, 'dedicated' islet media showed no advantage over ml99 in terms of maintaining islet morphology or function. TZD upregulates VEGF in islets as shown by ELISA and suggested by x-ray micro tomography analysis of vascular corrosion casts. Maintenance of islets in RC and treatment with TZD prior to transplant may improve the functional viability and revascularisation rate of islet grafts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.