16 resultados para Closed-Form Expressions
em Aston University Research Archive
Resumo:
We develop an analytical theory which allows us to identify the information spectral density limits of multimode optical fiber transmission systems. Our approach takes into account the Kerr-effect induced interactions of the propagating spatial modes and derives closed-form expressions for the spectral density of the corresponding nonlinear distortion. Experimental characterization results have confirmed the accuracy of the proposed models. Application of our theory in different FMF transmission scenarios has predicted a ~10% variation in total system throughput due to changes associated with inter-mode nonlinear interactions, in agreement with an observed 3dB increase in nonlinear noise power spectral density for a graded index four LP mode fiber. © 2013 Optical Society of America.
Resumo:
Prior to the development of a production standard control system for ML Aviation's plan-symmetric remotely piloted helicopter system, SPRITE, optimum solutions to technical requirements had yet to be found for some aspects of the work. This thesis describes an industrial project where solutions to real problems have been provided within strict timescale constraints. Use has been made of published material wherever appropriate, new solutions have been contributed where none existed previously. A lack of clearly defined user requirements from potential Remotely Piloted Air Vehicle (RPAV) system users is identified, A simulation package is defined to enable the RPAV designer to progress with air vehicle and control system design, development and evaluation studies and to assist the user to investigate his applications. The theoretical basis of this simulation package is developed including Co-axial Contra-rotating Twin Rotor (CCTR), six degrees of freedom motion, fuselage aerodynamics and sensor and control system models. A compatible system of equations is derived for modelling a miniature plan-symmetric helicopter. Rigorous searches revealed a lack of CCTR models, based on closed form expressions to obviate integration along the rotor blade, for stabilisation and navigation studies through simulation. An economic CCTR simulation model is developed and validated by comparison with published work and practical tests. Confusion in published work between attitude and Euler angles is clarified. The implementation of package is discussed. dynamic adjustment of assessment. the theory into a high integrity software Use is made of a novel technique basing the integration time step size on error Simulation output for control system stability verification, cross coupling of motion between control channels and air vehicle response to demands and horizontal wind gusts studies are presented. Contra-Rotating Twin Rotor Flight Control System Remotely Piloted Plan-Symmetric Helicopter Simulation Six Degrees of Freedom Motion ( i i)
Resumo:
WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network's performance compared to WCPS.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
We study the statistics of optical data transmission in a noisy nonlinear fiber channel with a weak dispersion management and zero average dispersion. Applying analytical expressions for the output probability density functions both for a nonlinear channel and for a linear channel with additive and multiplicative noise we calculate in a closed form a lower bound estimate on the Shannon capacity for an arbitrary signal-to-noise ratio.
Resumo:
This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the posterior distributions in closed form, based on solving an optimisation problem, in a spirit similar to 3D VAR analysis, but seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is used to estimate the advection field based on the assimilated precipitation fields at two times. The model is applied to tracking precipitation dynamics in a realistic setting, using UK Met Office radar data from both a summer convective event and a winter frontal event. The performance of the model is assessed both traditionally and using probabilistic measures of fit based on ROC curves. The model is shown to provide very good assimilation characteristics, and promising forecast skill. Improvements to the forecasting scheme are discussed
Resumo:
Pulse compression techniques originated in radar.The present work is concerned with the utilization of these techniques in general, and the linear FM (LFM) technique in particular, for comnunications. It introduces these techniques from an optimum communications viewpoint and outlines their capabilities.It also considers the candidacy of the class of LFM signals for digital data transmission and the LFM spectrum. Work related to the utilization of LFM signals for digital data transmission has been mostly experimental and mainly concerned with employing two rectangular LFM pulses (or chirps) with reversed slopes to convey the bits 1 and 0 in an incoherent node.No systematic theory for LFM signal design and system performance has been available. Accordingly, the present work establishes such a theory taking into account coherent and noncoherent single-link and multiplex signalling modes. Some new results concerning the slope-reversal chirp pair are obtained. The LFM technique combines the typical capabilities of pulse compression with a relative ease of implementation. However, these merits are often hampered by the difficulty of handling the LFM spectrum which cannot generally be expressed closed-form. The common practice is to obtain a plot of this spectrum with a digital computer for every single set of LFM pulse parameters.Moreover, reported work has been Justly confined to the spectrum of an ideally rectangular chirp pulse with no rise or fall times.Accordingly, the present work comprises a systerratic study of the LFM spectrum which takes the rise and fall time of the chirp pulse into account and can accommodate any LFM pulse with any parameters.It· formulates rather simple and accurate prediction criteria concerning the behaviour of this spectrum in the different frequency regions. These criteria would facilitate the handling of the LFM technique in theory and practice.
Resumo:
We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.
Resumo:
To ensure state synchronization of signalling operations, many signaling protocol designs choose to establish “soft” state that expires if it is not refreshed. The approaches of refreshing state in multi-hop signaling system can be classified as either end-to-end (E2E) or hop-by-hop (HbH). Although both state refresh approaches have been widely used in practical signaling protocols, the design tradeoffs between state synchronization and signaling cost have not yet been fully investigated. In this paper, we investigate this issue from the perspectives of state refresh and state removal. We propose simple but effective Markov chain models for both approaches and obtain closed-form solutions which depict the state refresh performance in terms of state consistency and refresh message rate, as well as the state removal performance in terms of state removal delay. Simulations verify the analytical models. It is observed that the HbH approach yields much better state synchronization at the cost of higher signaling cost than the E2E approach. While the state refresh performance can be improved by increasing the values of state refresh and timeout timers, the state removal delay increases largely for both E2E and HbH approaches. The analysis here shed lights on the design of signaling protocols and the configuration of the timers to adapt to changing network conditions.
Resumo:
The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense.
Resumo:
Purpose - This research note aims to present a summary of research concerning economic-lot scheduling problem (ELSP). Design/methodology/approach - The paper's approach is to review over 100 selected studies published in the last 15 years (1997-2012), which are then grouped under different research themes. Findings - Five research themes are identified and insights for future studies are reported at the end of this paper. Research limitations/implications - The motivation of preparing this research note is to summarize key research studies in this field since 1997, when the ELSP problems have been verified as NP-hard. Originality/value - ELSP is an important scheduling problem that has been studied since the 1950s. Because of its complexity in delivering a feasible analytical closed form solution, many studies in the last two decades employed heuristic algorithms in order to come up with good and acceptable solutions. As a consequence, the solution approaches are quite diversified. The major contribution of this paper is to provide researchers who are interested in this area with a quick reference guide on the reviewed studies. © Emerald Group Publishing Limited.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.
Resumo:
A closed-form expression for a lower bound on the per soliton capacity of the nonlinear optical fibre channel in the presence of (optical) amplifier spontaneous emission (ASE) noise is derived. This bound is based on a non-Gaussian conditional probability density function for the soliton amplitude jitter induced by the ASE noise and is proven to grow logarithmically as the signal-to-noise ratio increases.
Resumo:
The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.